版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Chapter2DiscreteFourierTransform
Instructor:TedEmail:yzmhit@163.comPhone:138360340682023/5/71整理課件ThreeQuestionsaboutDiscreteFourierTransformQ1:WHATisDFT?Q2:WHYisDFT?Q3:HOWtoDFT?WHATisrelationshipbetweenDFTandotherkindsofFourierTransform?WHYweneedDFT?HOWtorealizeDFT?HowtouseDFTtosolvethepracticalproblems?2023/5/72整理課件Basiccontentsofthischapter2.1ReviewofFourierTransform2.2DiscreteFourierSeries2.3Discrete
FourierTransform2.4RelationshipbetweenDFT,z-Transformandsequence’sFourierTransform2.5Frequencysamplingtheorem2.6Computesequence’slinearconvolutionusingDFT2.7SpectrumanalysisbasedonDFT2.8Review2023/5/73整理課件2.1FourierTransformInsomesituation,signal’sfrequencyspectrumcanrepresentitscharacteristicsmoreclearly.infrequency-domainintime-domainFourierTransformSignalAnalysisandProcessing(1)TimeDomainAnalysis:t-A(2)FrequencyDomainAnalysis:f-A2023/5/74整理課件2.1FourierTransformSignalAnalysisandProcessing:(1)TimeDomainAnalysis(2)FrequencyDomainAnalysisFourierTransformisabridgefromtimedomaintofrequencydomain.Characteristic:continuous—discrete,periodic—nonperiodic
.ContinuousperiodicsignalsContinuousnonperiodicsignalsDiscreteperiodicsignalsDiscretenonperiodic
signalsType:?2023/5/75整理課件1)Continuousperiodicsignal--FourierSeriesItisprovedthatcontinuous-timeperiodicsignalcanberepresentedbyaFourierSeriescorrespondingtoasumofharmonicallyrelatedcomplexexponentialsignal.Toaperiodicfunctionwithperiod,Conclusion:Continuousperiodic
function—
NonperiodicdiscretefrequencyimpulsesequenceTime-domainFrequency-domain2023/5/76整理課件2)Continuousnonperiodic
function’sFourierTransformConclusion
:Continuousnonperiodic
function—
NonperiodiccontinuousfunctionTime-domainFrequency-domain2023/5/77整理課件3)Discrete-timenonperiodic
sequence’sFourierTransformConclusion
:Discretenonperiodicfunction—
Continuous-timeperiodicfunctionTime-domainFrequency-domain2023/5/78整理課件4)Conclusion(1)Samplingintimedomainbringsperiodicityinfrequencydomain.(2)Samplinginfrequency
domainbringsperiodicityintimedomain.(3)Relationshipbetweenfrequencydomainandtimedomain
TimedomainFrequencydomainTransform
ContinuousperiodicDiscretenonperiodicFourierseriesContinuousnonperiodicContinuousnonperiodic
FourierTransform
DiscretenonperiodicContinuousperiodic
Sequence’sFourierTransform
DiscreteperiodicDiscreteperiodicDiscreteFourierSeriesPeriodicDiscrete;NonperiodicContinuous2023/5/79整理課件5)BasicideaofDiscreteFourierTransformInpracticalapplication,signalprocessedbycomputerhastwomaincharacteristics:(1)Discrete(2)FinitelengthSimilarly,signal’sfrequencymustalsohavetwomaincharacteristics:(1)Discrete
(2)Finitelength
Idea:
Expandfinite-lengthsequencetoperiodicsequence,computeitsDiscreteFourierSeries,sothatwecangetthediscretespectruminfrequencydomain.Butnonperiodicsequence’sFourierTransformisacontinuousfunctionof,anditisaperiodicfunctioninwithaperiod2.Soitisnotsuitabletosolvepracticaldigitalsignalprocessing.
2023/5/710整理課件2.2DiscreteFourierSeries1)DiscreteFourierSeriesTransformPairSimilarwithcontinuous-timeperiodicsignals,aperiodicsequencewithperiodN,canberepresentedbyaFourierSeriescorrespondingtoasumofharmonicallyrelatedcomplexexponentialsequences,suchas:Attention:
FourierSeriesfordiscrete-timesignalwithperiodNrequiresonlyNharmonicallyrelatedcomplexexponentials.(2-1)where2023/5/711整理課件computation2023/5/712整理課件Attention:DiscreteFourierSeriesforperiodicsequence:2023/5/713整理課件2)PropertiesofDFS(1)Linear(2)SequenceShift2023/5/714整理課件2)
PropertiesofDFS(3)PeriodicConvolutionComparedwithlinearconvolution,periodicconvolution’smaindifferenceis:Thesumisoverthefiniteintervalm=0~N-1.Periodicconvolution2023/5/715整理課件Periodicconvolution2023/5/716整理課件Symmetry:Multiplicationofperiodicsequenceintime-domainiscorrespondtoconvolutionofperiodicsequenceinfrequencydomain.2023/5/717整理課件PeriodicsequenceanditsDFS2023/5/718整理課件2.3DiscreteFourierTransform-DFTPeriodicsequenceanditsDFS2023/5/719整理課件
HINTS
Periodicsequenceisinfinitelength.butonlyNsequencevaluescontaininformation.Periodicsequencefinitelengthsequence.Relationshipbetweenthesesequences?InfiniteFinitePeriodicNonperiodic2023/5/720整理課件2.3DiscreteFourierTransform-DFT
Relationshipbetweenperiodicsequenceandfinite-lengthsequencePeriodicsequencecanbeseenasperiodicallycopiesoffinite-lengthsequence.Finite-lengthsequencecanbeseenasextractingoneperiodfromperiodicsequence.MainperiodFinite-durationSequencePeriodicSequence2023/5/721整理課件2.3DiscreteFourierTransform-DFT2023/5/722整理課件2.3DiscreteFourierTransformGetDFTbyextractingoneperiodofDFSDFSofperiodicsequenceComputationofDFTbyextractingoneperiodofDFSToafinite-lengthsequence:PeriodicalcopiesAttention:DFTisacquiredbyextractingoneperiodofDFS,itisnotanewkindofFourierTransform.2023/5/723整理課件
DFTTransformPairInverseTransform2023/5/724整理課件PropertyofDFT(1)Linearity(2)CircularShiftCircularshiftofx(n)canbedefined:2023/5/725整理課件CircularshiftofsequenceLinearshiftofsequence2023/5/726整理課件SymmetricbetweenDFTandIDFT2023/5/727整理課件(3)Parseval’sTheoremConservationofenergyintimedomainandfrequencydomain.2023/5/728整理課件(4)CircularconvolutionPeriodicconvolutionisconvolutionoftwosequenceswithperiodNinoneperiod,soitisalso
aperiodicsequencewithperiodN.Circularconvolutionisacquiredbyextractingoneperiodofperiodicconvolution,expressedby
.Circularconvolution2023/5/729整理課件f(n)CircularconvolutionPeriodicconvolution2023/5/730整理課件Circularconvolutioncanbeusedtocomputetwosequence’slinearconvolution.2023/5/731整理課件(5)共軛對稱性Conjugatesymmetricpropertiesa)DFTofconjugatesequenceAttention:X(k)hasonlykvalidvalues:0kN-12023/5/732整理課件b)DFTofsequence’srealandimaginarypart2023/5/733整理課件Xe(k)isevencomponentsofX(k),Xe(k)isconjugatesymmetric;thatisrealpartisequal,imaginarypartisopposite.Xo(k)isoddcomponentsofX(k),Xo(k)isconjugateasymmetric;thatisrealpartisopposite,imaginarypartisequal.2023/5/734整理課件Xe(k)conjugateevenpart,conjugatesymmetric;realpartisequal,imaginarypartisopposite.Xe(k)’srealpartXe(k)’simaginarypartXo(k)conjugateoddpart
,conjugateasymmetric;realpartisopposite,imaginarypartisequal.Xo(k)’srealpartXo(k)’simaginarypart2023/5/735整理課件Conclusion1)DFTofsequence’srealpartiscorrespondingtoX(k)’sconjugatesymmetricpart.2)DFTofsequence’simaginarypartiscorrespondingtoX(k)’sconjugateasymmetricpart.3)Supposex(n)isarealsequence,thatisx(n)=xr(n),thenX(k)onlyhasconjugatesymmetricpart,thatisX(k)=Xe(k)So:IfwegethalfX(k),wecanacquireallX(k)usingsymmetricproperties.2023/5/736整理課件DFTProgrammingExampleDFTMatrix2023/5/737整理課件function[Xk]=dft(xn)N=length(xn);%lengthofsequencen=0:N-1;%timesamplek=0:N-1;
WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;%calculatetheDFTMatrixXk=xn*WNnk;%computeDFTMoreeffectivemethod.2023/5/738整理課件Fs=400;%GettheanalyzedsignalT=1/Fs;L=1000;t=(0:L-1)*T;x=0.7*sin(2*pi*50*t);plot(1000*t(1:200),x(1:200));
Y=dft(x)/L;%DiscreteFourierTransformf=Fs/2*linspace(0,1,L/2+1);stem(f,2*abs(Y(1:L/2+1)));2023/5/739整理課件2023/5/740整理課件SummaryBasicideaofDFT;HowtogetDFTfromDFS;PropertyofDFT.2023/5/741整理課件2.4DFT,Sequence’sFourierTransformandz-transformDFSSamplingPeriodicCopiesExtractOneperiodExtractOneperiodDFTSequence’sFourierTransformFourierTransformContinuous-timeDiscrete-time2023/5/742整理課件Threedifferentfrequency-domainrepresentationsofafinite-lengthdiscrete-timesequence
2.Sequence’sFourierTransform3.DiscreteFourierTransform(DFT)1.z-Transform單位圓2023/5/743整理課件jIm[z]Re[z]X(k)
andX(z)?X(k)
andX(ejw)?2023/5/744整理課件Relationshipbetween2023/5/745整理課件2.5FrequencysamplingtheoremHowtorealize?Prerequisiteforimplementation?Whatisinterpolationformula?1)Samplingx(n)’sz-transform:Regularintervalsamplingonunitcircle:Lossaftersampling?2023/5/746整理課件Aftersamplinginfrequency-domain,canweacquiresequencerepresentingx(n)by
inversetransformingfromXN(k)?isperiodicalcopiesofx(n),thatissamplinginfrequencydomaincausesperiodicalcopiesofsequenceintime-domain.Ifwewanttorecoverthefinite-lengthsequencex(n)withnolossaftersamplinginfrequencydomain,thenitmustbesatisfied:Suppose:Misnumberofpointsintimedomain;
Nisnumberofpointsinfrequencydomain.Then:NMmustbesatisfiedifwewanttorecoveryx(n)withnolossfrom.(Proofinpage78)=?2023/5/747整理課件2)Interpolationformula2023/5/748整理課件ObjectiveDFTorIDFTcanbeusedtocomputetwosequence’scircularconvolution,andDFT,IDFThavetheirfastalgorithm.Soifwecanbuildtherelationshipbetweentwosequences’circularconvolutionandlinearconvolution,wecanimprovecomputationspeedoflinearconvolutionbyfastFourierTransformalgorithm.2.6Computingsequence’slinearconvolutionwithDFT2023/5/749整理課件CircularConvolutionLinearConvolutionWhatrelationshipbetweenand?2023/5/750整理課件2023/5/751整理課件2023/5/752整理課件ProcessConclusion:WecancomputelinearconvolutionusingcircularconvolutioniflengthofDFTssatisfyx’(n)h’(n)ZeropaddingZeropaddingX(k)H(k)X(k)H(k)x’(n)h’(n)x(n)
h(n)DFTDFTIDFT2023/5/753整理課件AfterFFTalgorithm,overlap-addmethodandover-lapsavemethodwillbelearned.Problems:Inpracticalapplication:y(n)=x(n)*h(n),supposex(n)’slengthisM,h(n)’lengthisN;Usually,M>>N,IfL=N+M-1,then:Forshortsequence:manyzerospaddedintoh(n).Forlongsequence:computeafterallsequenceinput.Difficulties:Largememory,longcomputationtime,soreal-timepropertycannotbesatisfied.Solution:decompositioncomputationonlongsequence.DividedandConquer2023/5/754整理課件SummaryRelationshipbetweenDFT,Sequence‘sFouriertransformandz-transform;Frequencysamplingtheorem;ComputationoflinearconvolutionusingDFT.2023/5/755整理課件2.7SpectrumanalysisusingDFT(1)Approximationprocess.SampleTT1)ProcessofspectrumanalysisusingDFTDFTT(2)Erroranalysis.(3)Importantparameters.Spectrumanalysis
DFTComputationDiscretizationintimeandfrequencydomain
2023/5/756整理課件BasictheoryofFourierTransformFinitedurationsignal→Infinitewidthfrequencyspectrum;Finitewidthfrequencyspectrum→Infinitedurationsignal.Inpractice,finitedurationsignalwithfinitewidthspectrumdoesnotreallyexist.Widebandsignals→Filtering,fc≤fs/2Infinitedurationsignals→ExtractfinitepointsEngineeringapplication:Filterhighfrequencycomponentwithsmallamplitude.Cutawaysignalcomponentwithsmallamplitude.Inbelowsections,allsignalsxa(t)aresupposedtobefinite-length,band-limitedsignalsafterfilteringandextracting.2023/5/757整理課件ProcessofspectrumanalysisusingDFT2)ErrorsofspectrumanalysisusingDFT(3)
FenceeffectSamplingTTTTTConvolution(1)(3)(2)(1)Aliasing(2)Cutoffeffect
Windowing2023/5/758整理課件(1)SamplingTTDFTT2)ErrorsofspectrumanalysisusingDFTProcessofspectrumanalysisusingDFT(1)Aliasing
Ifconditionisnotmet:therewillbespectrumdistortionatfs/2;
Solution:increasefs,orusinganti-aliasingpre-filtering.
Inpracticalapplication,2023/5/759整理課件(2)CutoffeffectofDFT
2)ErrorsofspectrumanalysisusingDFTTTTTTConvolution(1)(2)WindowingProcessofspectrumanalysisusingDFT2023/5/760整理課件CutoffeffectofDFTAmplitudeofsquare-wavefunctions’sspectrumbeforeandafterwindowingbysquare-wavefunction.LeakageDisturbanceSolution:increaseSamplingpointsN,orusingotherkindofwindowfunction.2023/5/761整理課件(3)TTDFTT2)ErrorsofspectrumanalysisusingDFTProcessofspectrumanalysisusingDFT(3)Fenceeffect
N
DFT→NequalintervalsamplingofFT.
Spectrumfunctionvalueisomittedbetweensamplingpoints,Nintervals.Solution:Zeropadding,orchangesequence’slength,increaseN.2023/5/762整理課件RelationshipbetweenDFTandspectrumofcontinuoussignalsSamplingfrequency:fs;Samplingholdtime:Tp;Samplingintervalinfrequencydomain(Spectrumresolution):F;Samplingpoints:NP86:example3.4.1DiscretePeriodicAperiodicContinuous2023/5/763整理課件3)ImportantparameterofDFTSomeimportantconclusion
(2)IfNunchanged,Fincensementcanonlybeacquiredbyloweringfs.Sospectrumanalysisscopewillbesmall.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 5G+AR技術(shù)在慢病遠(yuǎn)程隨訪中實(shí)踐
- 2025年廣安市武勝縣公證處招聘非在編公證員助理的備考題庫及答案詳解參考
- 初中歷史人物評價學(xué)習(xí)分析結(jié)果的可視化呈現(xiàn)與教學(xué)策略改進(jìn)研究教學(xué)研究課題報告
- 2025年湖州市敬業(yè)特種設(shè)備技術(shù)咨詢有限公司招聘5人備考題庫及答案詳解一套
- 3D打印導(dǎo)板在神經(jīng)外科手術(shù)中的精準(zhǔn)設(shè)計與規(guī)劃
- 2025年天津市政建設(shè)集團(tuán)有限公司面向社會公開選聘總法律顧問備考題庫及參考答案詳解一套
- 2025年關(guān)于公開招聘派遣至莆田市城廂區(qū)交通運(yùn)輸局非在編工作人員的備考題庫及參考答案詳解1套
- 平?jīng)鍪惺兄睂W(xué)校公開招聘2026屆協(xié)議培養(yǎng)師范生23人備考題庫(第二批)及答案詳解1套
- 2025年非遺皮影五年文旅演出效果報告
- 2025年中國藥科大學(xué)研究生院工作人員招聘備考題庫及參考答案詳解一套
- 貨幣發(fā)展史課件
- 兒童體適能初級基礎(chǔ)課程8
- 燃用生物質(zhì)循環(huán)流化床鍋爐生產(chǎn)項目節(jié)能評估報告(節(jié)能專)
- 心外科護(hù)理教學(xué)課件
- 2025年江蘇省無錫市梁溪區(qū)中考二模語文試題含答案解析
- 電廠高壓配電室管理制度
- 四年級上冊數(shù)學(xué)脫式計算大全500題及答案
- 分位數(shù)因子增廣混頻分位數(shù)回歸模型構(gòu)建及應(yīng)用研究
- T-HAAI 003-2024 數(shù)據(jù)資產(chǎn) 數(shù)據(jù)質(zhì)量評價規(guī)范
- DB31∕T 310001-2020 船舶水污染物內(nèi)河接收設(shè)施配置規(guī)范
- GB/T 44968-2024糧食儲藏小麥粉安全儲藏技術(shù)規(guī)范
評論
0/150
提交評論