版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE
1
of
NUMPAGES
10
中級(jí)計(jì)量經(jīng)濟(jì)學(xué)作業(yè)三參考答案
Forδ≠β,
y–δz=y–βz+(β–δ)z,
t t t t t
whichisanI(0)sequence(y–βz)plusanI(1)sequence.SinceanI(1)sequencehasa
t t
growingvariance,itdominatestheI(0)part,andtheresultingsumisanI(1)sequence.
IfunemfollowsastableAR(1)process,thenthisisthenullmodelusedtotestfor
t
Grangercausality:underthenullthatgMdoesnotGrangercauseunem,wecanwrite
t t
unem=β+βunem +u
t 0 1 t-1 t
E(u|unem,gM,unem,gM,K)=0
t t-1 t-1 t-2 t-2
and|β|<1.Now,itisuptoustochoosehowmanylagsofgMtoaddtothisequation.
1
ThesimplestapproachistoaddgM andtodoattest.Butwecouldaddasecondor
t-1
thirdlag(andprobablynotbeyondthiswithannualdata),andcomputeanFtestfor
jointsignificanceofalllagsofgM.
t
3.(a)
RestrictedmodelA:Yt=α1+α2X3t+α3X4t+α4X6t+ut
RestrictedmodelB:Yt=β1+β2X2t+β3X5t+β4X6t+ut
構(gòu)造ModelC:Yt=γ1+γ2X2t+γ3X3t+γ4X4t+γ5X5t+γ6X6t+ut
這時(shí)modelC嵌套或包含了modelA和B
利用F檢驗(yàn)Ho:γ??γ??γ?,根據(jù)檢驗(yàn)結(jié)果作出相應(yīng)判斷
再利用F檢驗(yàn)Ho’:γ??γ??γ?,根據(jù)檢驗(yàn)結(jié)果作出相應(yīng)判斷
(b)Jtest:
4.
(a)
.regLFPLWW1KL6K618WAWEUNCITPRIN
Source|
SS
df
MS
Numberofobs=
753
+
F(8, 744)=
17.28
Model|28. 83.
Prob>F =
0.0000
Residual|155.781861 744.
R-squared =
0.1567
+
AdjR-squared=
0.1476
Total|184.727756 752.
RootMSE =
.45759
LFP| Coef. Std.Err. t P>|t| [95%Conf.Interval]
+
LWW1|
. . 2.92
0.004
.
.
KL6|
-. . -8.14
0.000
-.
-.
K618|
-. . -0.60
0.548
-.
.019037
WA|
-. . -4.55
0.000
-.
-.
WE|
. . 4.87
0.000
.025116
.
UN|
-.003487
.
-0.64
0.525
-. .
CIT|
-.004477
.
-0.12
0.903
-. .
PRIN|
-6.77e-06
1.54e-06
-4.40
0.000
-9.79e-06 -3.75e-06
_cons|
.
.162686
4.26
0.000
. 1.01167
(b)
.logitLFPLWW1KL6K618WAWEUNCITPRIN
Ition0:loglikelihood=-514.8732Ition1:loglikelihood=-449.998Ition2:loglikelihood=-449.4765Ition3:loglikelihood=-449.47564Ition4:loglikelihood=-449.47564
Logisticregression
Numberofobs
=
753
LRchi2(8)
=
130.80
Prob>chi2
=
0.0000
Loglikelihood=-449.47564
PseudoR2
=
0.1270
LFP| Coef. Std.Err. z P>|z| [95%Conf.Interval]
+LWW1| . . 2.95 0.003 . .
KL6
|
-1.469201 . -7.40
0.000
-1.858291
-1.080112
K618
|
-. . -0.75
0.454
-.
.
WA
|
-.
.
-4.51
0.000 -.083554 -.
WE
|
.
.
4.81
0.000
. .
UN
|
-.
.
-0.70
0.483
-. .
CIT
|
.
.
0.07
0.943
-. .361949
PRIN
|
-.
8.11e-06
-4.36
0.000
-. -.
_cons
|
.
.
1.18
0.237
-. 2.527319
(c)
.probitLFPLWW1KL6K618WAWEUNCITPRIN
Ition0:loglikelihood=-514.8732Ition1:loglikelihood=-449.69111Ition2:loglikelihood=-449.39704Ition3:loglikelihood=-449.39696Ition4:loglikelihood=-449.39696
Probitregression
Numberofobs
=
753
LRchi2(8)
=
130.95
Prob>chi2
=
0.0000
Loglikelihood=-449.39696
PseudoR2
=
0.1272
LFP| Coef. Std.Err. z P>|z| [95%Conf.Interval]
+
LWW1| . .092771 3.04
0.002 .
.
KL6| -.880823 . -7.68
0.000 -1.105544
-.
K618|
-.
.
-0.73
0.466
-. .
WA|
-.
.
-4.55
0.000
-. -.
WE|
.
.
4.92
0.000
. .
UN|
-.
.
-0.69
0.489
-. .
CIT|
.
.
0.09
0.926
-. .
PRIN|
-.
4.71e-06
-4.51
0.000
-. -.000012
_cons|
.
.
1.18
0.239
-. 1.51277
(d)
Logit
ForP=0.568
P??1?P??β?LWW??0.568??1?0.568??0. ?0.113958P??1?P??β?KL??0.568??1?0.568????1.469201???0.36051
…….
…….
ForP=0.9
P??1?P??β?LWW??0.9??1?0.9??0. ?0.041798P??1?P??β?KL??0.9??1?0.9????1.469201???0.13222
…….
…….
Probit
ForP=0.568
f?P??β?LWW??0.393?0. ?0.110843f?P??β?KL??0.393???0.880823???0.34616
…………
…………
ForP=0.9
f?P??β?LWW??0.175?0. ?0.049357f?P??β?KL??0.175???0.880823???0.154144
…….
…….
5.
19500
19600
19700
19800
DATE
19500
19600
19700
19800
DATE
IS100000
120000
140000
IE
150000200000250000
(a)
0
5
10
15
Lag
Bartlett'sformulaforMA(q)95%confidencebands
0
5
10
15
Lag
Bartlett'sformulaforMA(q)95%confidencebands
AutocorrelationsofIE
-0.50 0.00 0.50
1.00
60000
80000
AutocorrelationsofIS
-0.50 0.00 0.50
50000
100000
1.00
PlotsofIE PlotsofIS
0
10
20
Lag
30
40
Bartlett'sformulaforMA(q)95%confidencebands
0
10
20
Lag
30
40
Bartlett'sformulaforMA(q)95%confidencebands
AutocorrelationsofD.IE
-0.40-0.200.000.200.40
AutocorrelationsofD.IS
-0.-200.100.000.00.20
ACFofIE ACFofIS
ACFofD.IE ACFofD.IS
0
10
20
Lag
30
40
95%Confidencebands[se1/sqrt(n)]
0
10
20
Lag
30
40
95%Confidencebands[se1/sqrt(n)]
PartialautocorrelationsofD.IE
-0.200.000.200.40
PartialautocorrelationsofD.IS
-0.-200.100.000.00.200.30
(b)
PACFofD.IE PACFofD.IS
IE:ARIMA(2,1,0),ARIMA(6,1,0)****,ARIMA(8,1,0)
IS:ARIMA(2,1,0)****,ARIMA(6,1,0),ARIMA(8,1,0)
(c)
ForIEseries:ARIMA(6,1,0)ForISseries:ARIMA(2,1,0)
IE:ARIMA(2,1,0)
.arimaIEifDATE>19554&DATE<19801,arima(2,1,0)
ARIMAregression
Sample:19562-19794,butwithgaps
Numberofobs
=
72
Waldchi2(2)
=
7.01
Loglikelihood=-698.0455
Prob>chi2
=
0.0301
|D.IE|
Coef.
OPG
Std.Err.
z
P>|z|
[95%Conf.Interval]
+
IE |
_cons| 1772.009 690.9798 2.56 0.010 417.7138 3126.305
ARMA
|
L1.| . .
1.07
0.287
-.
.
L2.| .
.176798
1.89
0.059
-.
.
+
ar|
+
/sigma| 3731.725 411.8912 9.06 0.000 2924.433 4539.017
Note:Thetestofthevarianceagainstzeroisonesided,andthetwo-sidedconfidenceintervalistruncatedatzero.
.estatic
Model| Obs ll(null) ll(model) df AIC BIC
+
.| 72 . -698.0455 4 1404.091 1413.198
Note:N=ObsusedincalculatingBIC;see[R]BICnote
IE:ARIMA(6,1,0)*******
.arimaIEifDATE>19554&DATE<19801,arima(6,1,0)
ARIMAregression
Sample:19562-19794,butwithgaps
Numberofobs
=
72
Waldchi2(6)
=
546.38
Loglikelihood=-689.423
Prob>chi2
=
0.0000
|D.IE|
Coef.
OPG
Std.Err.
z
P>|z|
[95%Conf.Interval]
+
IE |
_cons| 1786.862 437.2394 4.09 0.000 929.8882 2643.835
+
ARMA
|
ar|
L1.|
. . 1.12
0.265
-.
.
L2.|
. . 0.26
0.793
-.
.
L3.|
-. . -7.68
0.000
-.
-.
L4.|
-. . -4.28
0.000
-.622839
-.
L5.|
. . 1.38
0.169
-.
.
L6.|
-. . -2.54
0.011
-.
-.
+
/sigma| 2066.684 317.2699 6.51 0.000 1444.847 2688.522
Note:Thetestofthevarianceagainstzeroisonesided,andthetwo-sidedconfidenceintervalistruncatedatzero.
.estatic
Model| Obs ll(null) ll(model) df AIC BIC
+
.| 72 . -689.423 8 1394.846 1413.059
Note:N=ObsusedincalculatingBIC;see[R]BICnote
IE:ARIMA(8,1,0)
.arimaIEifDATE>19554&DATE<19801,arima(8,1,0)
ARIMAregression
Sample:19562-19794,butwithgaps
Numberofobs
=
72
Waldchi2(8)
=
229.19
Loglikelihood=-687.7048
Prob>chi2
=
0.0000
|D.IE|
Coef.
OPG
Std.Err.
z
P>|z|
[95%Conf.Interval]
+
IE |
_cons| 1758.374 616.0702 2.85 0.004 550.8987 2965.849
+
ARMA
|
ar
|
L1.
|
.357607 . 1.85
0.065
-.
.
L2.
|
. . 0.38
0.702
-.
.
L3.
|
-. . -0.89
0.373
-.
.
L4.
|
-. . -1.01
0.314
-.
.
L5.
|
. . 0.60
0.547
-.
.
L6.
|
-. . -3.22
0.001
-.
-.
L7.
|
. . 5.91
0.000
.
.
L8.
|
. . 0.12
0.906
-.
.
+
/sigma| 2434.234 318.2673 7.65 0.000 1810.441 3058.026
.estatic
Model| Obs ll(null) ll(model) df AIC BIC
+
.| 72 . -687.7048 10 1395.41 1418.176
PAGE
10
of
NUMPAGES
10
IS:ARIMA(2,1,0)******
.arimaISifDATE>19554&DATE<19801,arima(2,1,0)
ARIMAregression
Sample:19562-19794,butwithgaps
Numberofobs
=
72
Waldchi2(2)
=
9.77
Loglikelihood=-664.715
Prob>chi2
=
0.0076
|D.IS|
Coef.
OPG
Std.Err.
z
P>|z|
[95%Conf.Interval]
+
IS |
_cons| 838.0285 398.873 2.10 0.036 56.25176 1619.805
ARMA
|
L1.| .199456 . 1.38
0.169
-.
.
L2.| . . 1.74
0.083
-.
.
+
ar|
+
/sigma| 2363.697 212.9106 11.10 0.000 1946.4 2780.994
Note:Thetestofthevarianceagainstzeroisonesided,andthetwo-sidedconfidenceintervalistruncatedatzero.
.estatic
Model| Obs ll(null) ll(model) df AIC BIC
+
.| 72 . -664.715 4 1337.43 1346.537
Note:N=ObsusedincalculatingBIC;see[R]BICnote
IS:ARIMA(6,1,0)
.arimaISifDATE>19554&DATE<19801,arima(6,1,0)
ARIMAregression
Sample:19562-19794,butwithgaps
Numberofobs
=
72
Waldchi2(6)
=
46.59
Loglikelihood=-662.5394
Prob>chi2
=
0.0000
|D.IS|
Coef.
OPG
Std.Err.
z
P>|z|
[95%Conf.Interval]
+
IS |
_cons| 876.4501 540.3708 1.62 0.105 -182.6573 1935.557
+
ARMA |
ar|
L1.| . . 1.72 0.086 -. .
L2.| . . 1.63 0.103 -.104214 1.134455
L3.| -.605642 . -2.54 0.011 -1.073006 -.
L4.|-. . -1.00 0.316 -. .
L5.| .304689 . 1.14 0.253 -. .
L6.|-. . -0.69 0.490 -. .
+
/sigma| 1811.938 335.1136 5.41 0.000 1155.128 2468.749
Note:Thetestofthevarianceagainstzeroisonesided,andthetwo-sidedconfidenceintervalistruncatedatzero.
.estatic
Model| Obs ll(null) ll(model) df AIC BIC
+
.| 72 . -662.5394 8 1341.079 1359.292
Note:N=ObsusedincalculatingBIC;see[R]BICnote
IS:ARIMA(8,1,0)
.arimaISifDATE>19554&DATE<19801,arima(8,1,0)
ARIMAregression
Sample:19562-19794,butwithgaps
Numberofobs
=
72
Waldchi2(8)
=
63.64
Loglikelihood=-660.4983
Prob>chi2
=
0.0000
|D.IS|
Coef.
OPG
Std.Err.
z
P>|z|
[95%Conf.Interval]
+
IS |
_cons| 911.686 605.7722 1.50 0.132 -2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場(chǎng)設(shè)備購(gòu)置與管理方案
- 2025至2030中國(guó)數(shù)字療法產(chǎn)品審批路徑與醫(yī)療監(jiān)管體系適配性研究報(bào)告
- 中醫(yī)院外立面改造設(shè)計(jì)方案
- 小學(xué)生態(tài)環(huán)境保護(hù)措施方案
- 婦幼保健院信息化管理系統(tǒng)集成方案
- 標(biāo)準(zhǔn)化廠房設(shè)備安裝流程方案
- 2026年山西鐵道職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試模擬測(cè)試卷附答案
- 2026年沈陽(yáng)理工大學(xué)輔導(dǎo)員招聘?jìng)淇碱}庫(kù)附答案
- 2026年藥物分析題庫(kù)及答案(奪冠系列)
- 醫(yī)療美容行業(yè)發(fā)展趨勢(shì)及市場(chǎng)前景展示
- 2025年河南省中招理化生實(shí)驗(yàn)操作考試ABCD考場(chǎng)評(píng)分表
- 2024年吉林省高職高專院校單獨(dú)招生統(tǒng)一考試數(shù)學(xué)試題
- 四川省成都市邛崍市2024-2025學(xué)年九年級(jí)上學(xué)期期末化學(xué)試題(含答案)
- 2025新滬教版英語(yǔ)(五四學(xué)制)七年級(jí)下單詞默寫(xiě)表
- 食品行業(yè)停水、停電、停汽時(shí)應(yīng)急預(yù)案
- MEMRS-ECG心電網(wǎng)絡(luò)系統(tǒng)使用說(shuō)明書(shū)
- 美國(guó)變壓器市場(chǎng)深度報(bào)告
- 建設(shè)工程第三方質(zhì)量安全巡查標(biāo)準(zhǔn)
- 乳化液處理操作規(guī)程
- 飯店轉(zhuǎn)讓協(xié)議合同
- 營(yíng)建的文明:中國(guó)傳統(tǒng)文化與傳統(tǒng)建筑(修訂版)
評(píng)論
0/150
提交評(píng)論