版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023屆湖南省永州市祁陽縣重點(diǎn)達(dá)標(biāo)名校初三下學(xué)期3月模擬考試數(shù)學(xué)試題文試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.下列各數(shù)中,最小的數(shù)是()A.0 B. C. D.2.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點(diǎn)P是斜邊AB上一點(diǎn).過點(diǎn)P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為()A.B.C.D.3.在△ABC中,∠C=90°,,那么∠B的度數(shù)為()A.60° B.45° C.30° D.30°或60°4.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個(gè)數(shù)最少是()A.4 B.5 C.6 D.75.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米6.矩形具有而平行四邊形不具有的性質(zhì)是()A.對角相等 B.對角線互相平分C.對角線相等 D.對邊相等7.關(guān)于x的不等式組無解,那么m的取值范圍為()A.m≤-1 B.m<-1 C.-1<m≤0 D.-1≤m<08.-的立方根是()A.-8 B.-4 C.-2 D.不存在9.若=1,則符合條件的m有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10.如圖,已知AB∥CD,∠1=115°,∠2=65°,則∠C等于()A.40° B.45° C.50° D.60°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在中,,點(diǎn)D、E分別在邊、上,且,如果,,那么________.12.如圖,數(shù)軸上點(diǎn)A、B、C所表示的數(shù)分別為a、b、c,點(diǎn)C是線段AB的中點(diǎn),若原點(diǎn)O是線段AC上的任意一點(diǎn),那么a+b-2c=______.13.如圖,直線經(jīng)過、兩點(diǎn),則不等式的解集為_______.14.高速公路某收費(fèi)站出城方向有編號為的五個(gè)小客車收費(fèi)出口,假定各收費(fèi)出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時(shí)開放其中的某兩個(gè)收費(fèi)出口,這兩個(gè)出口20分鐘一共通過的小客車數(shù)量記錄如下:收費(fèi)出口編號通過小客車數(shù)量(輛)260330300360240在五個(gè)收費(fèi)出口中,每20分鐘通過小客車數(shù)量最多的一個(gè)出口的編號是___________.15.已知邊長為2的正六邊形ABCDEF在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2018次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是______.16.反比例函數(shù)的圖象經(jīng)過點(diǎn)(﹣3,2),則k的值是_____.當(dāng)x大于0時(shí),y隨x的增大而_____.(填增大或減?。?7.甲、乙兩名學(xué)生練習(xí)打字,甲打135個(gè)字所用時(shí)間與乙打180個(gè)字所用時(shí)間相同,已知甲平均每分鐘比乙少打20個(gè)字,如果設(shè)甲平均每分鐘打字的個(gè)數(shù)為x,那么符合題意的方程為:______.三、解答題(共7小題,滿分69分)18.(10分)為給鄧小平誕辰周年獻(xiàn)禮,廣安市政府對城市建設(shè)進(jìn)行了整改,如圖所示,已知斜坡長60米,坡角(即)為,,現(xiàn)計(jì)劃在斜坡中點(diǎn)處挖去部分斜坡,修建一個(gè)平行于水平線的休閑平臺和一條新的斜坡(下面兩個(gè)小題結(jié)果都保留根號).若修建的斜坡BE的坡比為:1,求休閑平臺的長是多少米?一座建筑物距離點(diǎn)米遠(yuǎn)(即米),小亮在點(diǎn)測得建筑物頂部的仰角(即)為.點(diǎn)、、、,在同一個(gè)平面內(nèi),點(diǎn)、、在同一條直線上,且,問建筑物高為多少米?19.(5分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點(diǎn)G在菱形對角線AC上運(yùn)動(dòng),角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到與點(diǎn)A重合時(shí),求證:EC+CF=BC;(2)知識探究:①如圖乙,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到AC的中點(diǎn)時(shí),請直接寫出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫出證明過程);②如圖丙,在頂點(diǎn)G運(yùn)動(dòng)的過程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當(dāng)>2時(shí),求EC的長度.20.(8分)如圖,在菱形ABCD中,點(diǎn)P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線;(2)若AC=8,tan∠BAC=,求⊙O的半徑.21.(10分)為了加強(qiáng)學(xué)生的安全意識,某校組織了學(xué)生參加安全知識競賽.從中抽取了部分學(xué)生成績(得分?jǐn)?shù)取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制統(tǒng)計(jì)頻數(shù)分布直方圖(未完成)和扇形圖如下,請解答下列問題:(1)A組的頻數(shù)a比B組的頻數(shù)b小24,樣本容量,a為:(2)n為°,E組所占比例為%:(3)補(bǔ)全頻數(shù)分布直方圖;(4)若成績在80分以上優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績優(yōu)秀學(xué)生有名.22.(10分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數(shù)軸上表示出來.23.(12分)如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線y=+m經(jīng)過點(diǎn)C,與拋物線的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線CD上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.(1)求拋物線解析式并求出點(diǎn)D的坐標(biāo);(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當(dāng)△CPE是等腰三角形時(shí),請直接寫出m的值.24.(14分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過點(diǎn)B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點(diǎn),∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點(diǎn)M,求QM的長.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)實(shí)數(shù)大小比較法則判斷即可.【詳解】<0<1<,故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)的大小比較的應(yīng)用,掌握正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)負(fù)數(shù)比較大小,其絕對值大的反而小是解題的關(guān)鍵.2、D【解析】解:當(dāng)點(diǎn)Q在AC上時(shí),∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當(dāng)點(diǎn)Q在BC上時(shí),如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點(diǎn)睛:本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點(diǎn)Q在BC上這種情況.3、C【解析】
根據(jù)特殊角的三角函數(shù)值可知∠A=60°,再根據(jù)直角三角形中兩銳角互余求出∠B的值即可.【詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點(diǎn)睛:本題考查了特殊角的三角函數(shù)值和直角三角形中兩銳角互余的性質(zhì),熟記特殊角的三角函數(shù)值是解答本題的突破點(diǎn).4、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個(gè)小正方體;從俯視圖可以可以看出最底層的個(gè)數(shù)所以圖中的小正方體最少2+4=1.故選C.5、D【解析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設(shè)BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.6、C【解析】試題分析:舉出矩形和平行四邊形的所有性質(zhì),找出矩形具有而平行四邊形不具有的性質(zhì)即可.解:矩形的性質(zhì)有:①矩形的對邊相等且平行,②矩形的對角相等,且都是直角,③矩形的對角線互相平分、相等;平行四邊形的性質(zhì)有:①平行四邊形的對邊分別相等且平行,②平行四邊形的對角分別相等,③平行四邊形的對角線互相平分;∴矩形具有而平行四邊形不一定具有的性質(zhì)是對角線相等,故選C.7、A【解析】【分析】先求出每一個(gè)不等式的解集,然后再根據(jù)不等式組無解得到有關(guān)m的不等式,就可以求出m的取值范圍了.【詳解】,解不等式①得:x<m,解不等式②得:x>-1,由于原不等式組無解,所以m≤-1,故選A.【點(diǎn)睛】本題考查了一元一次不等式組無解問題,熟知一元一次不等式組解集的確定方法“大大取大,小小取小,大小小大中間找,大大小小無處找”是解題的關(guān)鍵.8、C【解析】分析:首先求出的值,然后根據(jù)立方根的計(jì)算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點(diǎn)睛:本題主要考查的是算術(shù)平方根與立方根,屬于基礎(chǔ)題型.理解算術(shù)平方根與立方根的含義是解決本題的關(guān)鍵.9、C【解析】
根據(jù)有理數(shù)的乘方及解一元二次方程-直接開平方法得出兩個(gè)有關(guān)m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個(gè)值故答案選C.【點(diǎn)睛】本題考查的知識點(diǎn)是有理數(shù)的乘方及解一元二次方程-直接開平方法,解題的關(guān)鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開平方法.10、C【解析】分析:根據(jù)兩直線平行,同位角相等可得再根據(jù)三角形內(nèi)角與外角的性質(zhì)可得∠C的度數(shù).詳解:∵AB∥CD,∴∵∴故選C.點(diǎn)睛:考查平行線的性質(zhì)和三角形外角的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據(jù),,得出,利用相似三角形的性質(zhì)解答即可.【詳解】∵,,∴,∴,即,∴,∵,∴,故答案為:【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì).關(guān)鍵是要懂得找相似三角形,利用相似三角形的性質(zhì)求解.12、1【解析】∵點(diǎn)A、B、C所表示的數(shù)分別為a、b、c,點(diǎn)C是線段AB的中點(diǎn),∴由中點(diǎn)公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案為1.13、-1<X<2【解析】經(jīng)過點(diǎn)A,∴不等式x>kx+b>-2的解集為.14、B【解析】
利用同時(shí)開放其中的兩個(gè)安全出口,20分鐘所通過的小車的數(shù)量分析對比,能求出結(jié)果.【詳解】同時(shí)開放A、E兩個(gè)安全出口,與同時(shí)開放D、E兩個(gè)安全出口,20分鐘的通過數(shù)量發(fā)現(xiàn)得到D疏散乘客比A快;同理同時(shí)開放BC與CD進(jìn)行對比,可知B疏散乘客比D快;同理同時(shí)開放BC與AB進(jìn)行對比,可知C疏散乘客比A快;同理同時(shí)開放DE與CD進(jìn)行對比,可知E疏散乘客比C快;同理同時(shí)開放AB與AE進(jìn)行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【點(diǎn)睛】本題考查簡單的合理推理,考查推理論證能力等基礎(chǔ)知識,考查運(yùn)用求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.15、(4033,)【解析】
根據(jù)正六邊形的特點(diǎn),每6次翻轉(zhuǎn)為一個(gè)循環(huán)組循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定出點(diǎn)B的位置,經(jīng)過第2017次翻轉(zhuǎn)之后,點(diǎn)B的位置不變,仍在x軸上,由A(﹣2,0),可得AB=2,即可求得點(diǎn)B離原點(diǎn)的距離為4032,所以經(jīng)過2017次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是(4032,0),經(jīng)過2018次翻轉(zhuǎn)之后,點(diǎn)B在B′位置(如圖所示),則△BB′C為等邊三角形,可求得BN=NC=1,B′N=,由此即可求得經(jīng)過2018次翻轉(zhuǎn)之后點(diǎn)B的坐標(biāo).然后求出翻轉(zhuǎn)前進(jìn)的距離,過點(diǎn)C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后寫出點(diǎn)C的坐標(biāo)即可.【詳解】設(shè)2018次翻轉(zhuǎn)之后,在B′點(diǎn)位置,∵正六邊形ABCDEF沿x軸正半軸作無滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,∴每6次翻轉(zhuǎn)為一個(gè)循環(huán)組,∵2018÷6=336余2,∴經(jīng)過2016次翻轉(zhuǎn)為第336個(gè)循環(huán),點(diǎn)B在初始狀態(tài)時(shí)的位置,而第2017次翻轉(zhuǎn)之后,點(diǎn)B的位置不變,仍在x軸上,∵A(﹣2,0),∴AB=2,∴點(diǎn)B離原點(diǎn)的距離=2×2016=4032,∴經(jīng)過2017次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是(4032,0),經(jīng)過2018次翻轉(zhuǎn)之后,點(diǎn)B在B′位置,則△BB′C為等邊三角形,此時(shí)BN=NC=1,B′N=,故經(jīng)過2018次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是:(4033,).故答案為(4033,).【點(diǎn)睛】本題考查的是正多邊形和圓,涉及到坐標(biāo)與圖形變化-旋轉(zhuǎn),正六邊形的性質(zhì),確定出最后點(diǎn)B所在的位置是解題的關(guān)鍵.16、﹣6增大【解析】
∵反比例函數(shù)的圖象經(jīng)過點(diǎn)(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,則y隨x的增大而增大.故答案為﹣6;增大.【點(diǎn)睛】本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質(zhì):(1)當(dāng)k>0時(shí),函數(shù)圖象在一,三象限,在每個(gè)象限內(nèi),y隨x的增大而減??;(2)當(dāng)k<0時(shí),函數(shù)圖象在二,四象限,在每個(gè)象限內(nèi),y隨x的增大而增大.17、【解析】
設(shè)甲平均每分鐘打x個(gè)字,則乙平均每分鐘打(x+20)個(gè)字,根據(jù)工作時(shí)間=工作總量÷工作效率結(jié)合甲打135個(gè)字所用時(shí)間與乙打180個(gè)字所用時(shí)間相同,即可得出關(guān)于x的分式方程.【詳解】∵甲平均每分鐘打x個(gè)字,
∴乙平均每分鐘打(x+20)個(gè)字,
根據(jù)題意得:,
故答案為.【點(diǎn)睛】本題考查了分式方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出分式方程是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)m(2)米【解析】分析:(1)由三角函數(shù)的定義,即可求得AM與AF的長,又由坡度的定義,即可求得NF的長,繼而求得平臺MN的長;(2)在RT△BMK中,求得BK=MK=50米,從而求得EM=84米;在RT△HEM中,求得,繼而求得米.詳解:(1)∵M(jìn)F∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB長米,M是AB的中點(diǎn),∴AM=(米),∴AF=MF=AM?cos∠AMF=(米),在中,∵斜坡AN的坡比為∶1,∴,∴,∴MN=MF-NF=50-=.(2)在RT△BMK中,BM=,∴BK=MK=50(米),
EM=BG+BK=34+50=84(米)在RT△HEM中,∠HME=30°,∴,∴,∴(米)答:休閑平臺DE的長是米;建筑物GH高為米.點(diǎn)睛:本題考查了坡度坡角的問題以及俯角仰角的問題.解題的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,將實(shí)際問題轉(zhuǎn)化為解直角三角形的問題;掌握數(shù)形結(jié)合思想與方程思想在題中的運(yùn)用.19、(1)證明見解析(2)①線段EC,CF與BC的數(shù)量關(guān)系為:CE+CF=BC.②CE+CF=BC(3)【解析】
(1)利用包含60°角的菱形,證明△BAE≌△CAF,可求證;(2)由特殊到一般,證明△CAE′∽△CGE,從而可以得到EC、CF與BC的數(shù)量關(guān)系(3)連接BD與AC交于點(diǎn)H,利用三角函數(shù)BH,AH,CH的長度,最后求BC長度.【詳解】解:(1)證明:∵四邊形ABCD是菱形,∠BAD=120°,∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,∵∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF,∴EC+CF=EC+BE=BC,即EC+CF=BC;(2)知識探究:①線段EC,CF與BC的數(shù)量關(guān)系為:CE+CF=BC.理由:如圖乙,過點(diǎn)A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.
類比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE,,同理可得:,,即;②CE+CF=BC.理由如下:過點(diǎn)A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.類比(1)可得:E′C+CF′=BC,∵AE′∥EG,∴△CAE′∽△CAE,∴,∴CE=CE′,同理可得:CF=CF′,∴CE+CF=CE′+CF′=(CE′+CF′)=BC,即CE+CF=BC;(3)連接BD與AC交于點(diǎn)H,如圖所示:在Rt△ABH中,∵AB=8,∠BAC=60°,∴BH=ABsin60°=8×=,AH=CH=ABcos60°=8×=4,∴GH===1,∴CG=4-1=3,∴,∴t=(t>2),由(2)②得:CE+CF=BC,∴CE=BC-CF=×8-=.【點(diǎn)睛】本題屬于相似形綜合題,主要考查了全等三角形的判定和性質(zhì)、菱形的性質(zhì),相似三角形的判定和性質(zhì)等知識的綜合運(yùn)用,解題的關(guān)鍵是靈活運(yùn)用這些知識解決問題,學(xué)會添加輔助線構(gòu)造相似三角形.20、(1)見解析;(2).【解析】分析:(1)連結(jié)OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質(zhì)得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線的判定定理得到直線AB與⊙O相切;(2)連結(jié)BD,交AC于點(diǎn)F,根據(jù)菱形的性質(zhì)得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設(shè)⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結(jié)論.詳解:(1)連結(jié)OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線AB與⊙O相切;(2)連結(jié)BD,交AC于點(diǎn)F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.設(shè)⊙O的半徑為R,則OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半徑為.點(diǎn)睛:本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的性質(zhì)和銳角三角函數(shù)以及勾股定理.21、(1)200;16(2)126;12%(3)見解析(4)940【解析】分析:(1)由于A組的頻數(shù)比B組小24,而A組的頻率比B組小12%,則可計(jì)算出調(diào)查的總?cè)藬?shù),然后計(jì)算a和b的值;(2)用360度乘以D組的頻率可得到n的值,根據(jù)百分比之和為1可得E組百分比;(3)計(jì)算出C和E組的頻數(shù)后補(bǔ)全頻數(shù)分布直方圖;(4)利用樣本估計(jì)總體,用2000乘以D組和E組的頻率和即可.本題解析:()調(diào)查的總?cè)藬?shù)為,∴,,()部分所對的圓心角,即,組所占比例為:,()組的頻數(shù)為,組的頻數(shù)為,補(bǔ)全頻數(shù)分布直方圖為:(),∴估計(jì)成績優(yōu)秀的學(xué)生有人.點(diǎn)睛:本題考查了頻數(shù)(率)分布直方圖:提高讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力;利用統(tǒng)計(jì)圖獲取信息時(shí),要認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問題,也考查了用樣本估計(jì)總體.22、(1)4﹣5;﹣<x≤2,在數(shù)軸上表示見解析【解析】
(1)此題涉及乘方、特殊角的三角函數(shù)、負(fù)整數(shù)指數(shù)冪和二次根式的化簡,首先針對各知識點(diǎn)進(jìn)行計(jì)算,再計(jì)算實(shí)數(shù)的加減即可;(2)首先解出兩個(gè)不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集.【詳解】解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;(2),解①得:x>﹣,解②得:x≤2,不等式組的解集為:﹣<x≤2,在數(shù)軸上表示為:.【點(diǎn)睛】此題主要考查了解一元一次不等式組,以實(shí)數(shù)的運(yùn)算,關(guān)鍵是正確確定兩個(gè)不等式的解集,掌握特殊角的三角函數(shù)值.23、(1)y=﹣x2+2x+3,D點(diǎn)坐標(biāo)為();(2)當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】
(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點(diǎn)坐標(biāo);
(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;
(3)討論:當(dāng)PC=PE時(shí),m2+(-m2+2m+3-3)2=(-m2+m)2;當(dāng)CP=CE時(shí),m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當(dāng)EC=EP時(shí),m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點(diǎn)坐標(biāo)為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)當(dāng)PC=PE時(shí),m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當(dāng)CP=CE時(shí),m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當(dāng)EC=EP時(shí),m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點(diǎn)睛】本題考核知識點(diǎn):二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點(diǎn):靈活運(yùn)用二次函數(shù)性質(zhì),運(yùn)用數(shù)形結(jié)合思想.24、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點(diǎn)Q,PE⊥AB于點(diǎn)E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高爐渣綜合利用項(xiàng)目申請報(bào)告
- 鈉離子電池生產(chǎn)線項(xiàng)目建議書
- 幕墻鋼結(jié)構(gòu)施工環(huán)保材料使用方案
- 鋼結(jié)構(gòu)幕墻緊固件選用方案
- 水力學(xué)試卷及答案
- 2026年軟件質(zhì)量保障評估員面試問題與答案
- 醫(yī)療機(jī)構(gòu)衛(wèi)生防疫操作手冊
- 企業(yè)企業(yè)社會責(zé)任履行與報(bào)告指南
- 港口物流運(yùn)營管理規(guī)范
- 2025年信息技術(shù)培訓(xùn)與教育指導(dǎo)手冊
- 特種工安全崗前培訓(xùn)課件
- 新疆維吾爾自治區(qū)普通高中2026屆高二上數(shù)學(xué)期末監(jiān)測試題含解析
- 2026屆福建省三明市第一中學(xué)高三上學(xué)期12月月考?xì)v史試題(含答案)
- 2026年遼寧金融職業(yè)學(xué)院單招職業(yè)技能測試題庫附答案解析
- (正式版)DB51∕T 3342-2025 《爐灶用合成液體燃料經(jīng)營管理規(guī)范》
- 2026北京海淀初三上學(xué)期期末語文試卷和答案
- 全國中學(xué)生數(shù)學(xué)建模競賽試題及答案
- 兩輪車控制器行業(yè)報(bào)告
- 公司食材配送方案
- 紅外和拉曼光譜
- 賽膚潤常見臨床應(yīng)用2010年
評論
0/150
提交評論