隊題我們仔細閱讀了第四屆認證杯數(shù)學建模國際的競賽規(guī)則_第1頁
隊題我們仔細閱讀了第四屆認證杯數(shù)學建模國際的競賽規(guī)則_第2頁
隊題我們仔細閱讀了第四屆認證杯數(shù)學建模國際的競賽規(guī)則_第3頁
隊題我們仔細閱讀了第四屆認證杯數(shù)學建模國際的競賽規(guī)則_第4頁
隊題我們仔細閱讀了第四屆認證杯數(shù)學建模國際的競賽規(guī)則_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第四屆“認證杯”數(shù)學中國

數(shù)學建模國際賽編號專用頁

參賽隊伍的參賽隊號:(請各個參賽隊提前填寫好):

1848

競賽統(tǒng)一編號(由競賽送至評委團前編號):

競賽評閱編號(由競賽評委團評閱前進行編號):

Theassessmentofseatbackcomfortbasedon

yticHierarchyProcess

:

Theseatwasoneoftheairne’scriticalfacilities,itsdesigndegreehadthedirectrelationshipwiththecomfortableperformanceoftheflight.Butsomeairlinesarenowintroducingnew"slimline"seatwhichhasthinnerbackteandlesspaddingineconomyclass.Thereisnodoubtmanypassengershaveexpresseddispleasurewiththeseseats.Thecomfortdependsnotonlyonthematerialselectionofseat,butalsocloselyrelatedtotheinclinationoftheseat,whetherequippedwithlumbarsupportandadjustability.Inordertoprovidetravelswithacomfortableexperience,itisessentialtodesignaseatbackbyusingtheergonomic.

Inthedesignoftraditionalseats,peopleareaccustomedtocreatingtheframefirstandthenputtingonasuitablefoamlayertomakethetravelsfeelcomfortable.Butinthedesignofthenew"slimline"seat,thedesignconceptisopposite.Weneedtocreateasuitablecurvethatfitthebodyperfectlyandthendesigntheseat.

Wefirststudytheergonomicandchoosefivepointsasthefeaturepointsofthespine.Afterestimatingtheparametersinhumandimensionsofadults,wefitacurveofthespineroughly.ThenwebuildacomfortmodelbyusingtheyticHierarchyProcesstogetagoodcomfortevaluation.Thecomfortmodelcanevaluatethedegreeofseatbackcomfortinabetterway.Butsubjectively,differentpeoplehavedifferentevaluations.Sothismodelcannotavoidthedependenceonsubjectiveevaluationtest.Thus,weonlyconsidertheabilitytoendurepressureinfourmainregionsofthehumanbackwhenweusethehierarchy.Thismethodobjectivelyevaluatethedegreeofthecomfort,andachieveagoodresult.Finally,wetestthemodelandgetaconclusionthatthebodywillfeelthemostcomfortablewhentheangleisabout112o.Themodeltakeaguidingroleinmaterialselection,angleselection,aswellascostestimationin"slimline"seat.

: Ergonomic;CurveFitting; yticHierarchyProcess

Introduction

Theseatwasoneoftheairne’scriticalfacilities,itsdesigndegreehadthedirectrelationshipwiththecomfortableperformanceoftheflight.Thecontemporarytraveler’sevaluationtotheairlineseatwasnotonlysatisfiedwithbeautifulshape,butalsovaluedthe ’sfactor,forexamplethecomfortoftheposture,theeasyandconvenientbodyoperation,thedistributionofreasonablebodypressureetc[1].Butsomeairlinesarenowintroducingnew"slimline"seatwhichhasthinnerbackteandlesspaddingineconomyclass.Slimlineseatsarebeingfurtherrefined,liberatingmorepassengerspace.Thereisnodoubtmanypassengershaveexpresseddispleasurewiththeseseats.

Inordertoimprovethepassengerscomfort,thehumanengineeringwasusedintheairlineseat‘sysis.Themostcomfortablesittingpostureshouldbethattheseatbackhadalittleincline.Thethighandtheupperpartofthebodykeepaintersectionanglebetween90oand120o.Wefirstfittedaseatbackcurvethathadthesimilarbackcurvewiththespinebyyzingsomeoftheanthropometricdata.Underthiscircumstance,webuildacomfortmodelbyusingtheyticHierarchyProcesstogetagoodcomfortevaluation.Thus,wedividedthisproblemintothefollowingtwosub-problems:

ProblemI:Designthecurve.ProblemII:Buildthecomfortmodel.

DefiningtheProblem

The"slimline"seats,inadditiontoweightingless,theoreticallyallowairlinestoincreasecapacitywithoutsignificantaffectingpassengercomfort.Theseseatsmayormaynotfeaturemoveableheadrests,andgenerallydonotfeatureadjustablelumbarsupport.Astoacomfortableseat,theessentialwasthatcouldproducethemostappropriatepressuretodistributetotheeachintervertebaldisc.Atpresent,mostofourcivilianaircraftareAirbusandserieswhicharecreatedabroad.ThesizeoftheseatisbasedonthedimensionoftheEuropeanandAmericanwhichislargerthan.Thismayresultinasenseofpressureduetothehighseatback.Forthisreason,weshouldtakethedimensionsofintoaccount.Theairlineseatshouldhaveanadjustabledesign.Weestablishaseatbackcurvebyyzingreliabledataonthespinemodelandanthropometry.Considerthemostcomfortableangleofhumanspine.Thenadjustthepaddingandcurvetooptimizetheseat.

Models

TheDesignofCurve

Thedesignoftheairlineseatbasedonanthropometricdata.Thedataaredividedintotwocategories,staticsizeanddynamicsize.Staticsizeisasizethattheexperimentalsubjectisinastationarystate.Thedesignrelatedtobodystructureismainlybasedonthestaticsizewhichcanbeusedintheseat’sheightanddepthaswellastheseat

back’swidthandheight.Meanwhile,thedynamicbodysizecanreflecttherelationsbetweenfunctionandstructureofthebody.Thesetwodimensionsareboththesignificantbasesforcivilaviation.Table1isthehumandimensionsofadults.ItisastandardcalledGB10000-88.Thisstandardthatbasedonergonomicsrequirementsprovidethefundamentaldataofanadulthumanbody.

Table1:Humandimensionsofadults units:[mm]

Male(18-60)

Female(18-60)

Percentiles

5

50

95

5

50

95

Sittingheight

858

908

958

809

855

901

Sittingcervicalheight

615

657

701

579

617

657

Sittingeyeheight

749

798

847

695

739

738

Sittingshoulderheight

557

598

641

518

556

594

Sittingelbowheight

228

263

298

215

251

284

Assumptions:

Thedataintable1areallnakedmeasurements.

Bodydimensionsarequitedifferentindifferentregions.

Thefifthpercentilerepresentsthat5%oftheheightdimensionaresmallerthanthissize.

Terms,DefinitionsandSymbols

Thehumanvertebralcolumnisthebackboneofthehumanskeleton,consistingof33vertebrae.Individualvertebraearenamedaccordingtotheirregionandposition.Fromtoptobottom,thevertebraeare:

Cervicalspine:7vertebrae(C1-C7)

Thoracicspine:12vertebrae(T1-T12)

Lumbarspine:5vertebrae(L1-L5)

Sacrum:5vertebrae(S1-S5)

Coccyx:4vertebrae

Accordingtotheergonomics,themain pointsareonthelumberspine,shoulderbladeandcervicalspinewhenthebodyinthecomfortablestate.Inordertofitabettercurve,wechoosefivefeaturepointsincludingthreeofthemain points,thebeginningandtheendoftheentirespine.Table2isthedefinitionofthefivepoints.

Table2:Definitionofthefeaturepoint

P1 ThecentralpointofS1

P2 ThecentralpointofthecombinationofL1andT12P3 Themainpointofshoulder

P4 ThecentralpointofthecombinationofT1andC7P5 ThecentralpointofC1

Themethodofleastsquaresisastandardapproachinregressionysistotheapproximatesolutionofoverdeterminedsystem."Leastsquares"meansthattheoverallsolutionminimizesthesumofthesquaresoftheerrorsmadeintheresultsof

everysingleequation.Themostimportantapplicationisindatafit.Thebestfitintheleast-squaressenseminimizesthesumofsquaredresiduals,aresidualbeingthedifferencebetweenanobservedvalueandthefittedvalueprovidedbyamodel.Polynomialleastsquaresdescribesthevarianceinapredictionofthedependentvariableasafunctionoftheindependentvariableandthedeviationsfromthefittedcurve.

SolutionandResult

Insolvingthisproblem,weusetheleastsquares[2]tofitthecurveonthebasisofthedataabove.Thepolynomialmodelandcubicsplineinterpolationmodelarebothusedinthefitting.Whenfittingwiththepolynomialinterpolation,low-orderpolynomialsmakethedata"smoothing"butthehigh-orderpolynomialshaslittledeviation.ThefivefeaturepointsP1-P5extractedaboveareusedtofitthespinecurve.Undertheabovecircumstance,webuildarectangularcoordinatesystem.Theoriginofthecoordinatesisthecenterofthejunctionoftheseatbackandcushion,theverticaldirectionisthex-axisandthehorizontaldirectionisy-axis.AccordingtotheparametersintheTable1wecangetthecoordinatesofP1-P5.Table3isthefeaturepoints’coordinates.

Table3:Coordinatesofthefeaturepoints units:[mm]

Coordinates

P1

(0,99)

P2

(263,148)

P3

(598,121)

P4

(657,135)

P5

(798,125)

Thestepstofitthefeaturepointsbyusingthe

andtheleastsquaresareas

follows:First,wechoosethethird-orderpolynomialtodocurvefitting.Thenormalequationofthethird-orderpolynomialis:

0 1 2 3

yaaxax2ax3.

ThenwegettheresultoffittingasFigure1.Figure1showsthecurve.

200

P2

y

100P1

P3 P4 P5

0

0 100 200 300 400 500 600 700 800

x

Figure1

Byyzingthecurvewecanobtainaequation:

y6.2184107x39.5808104x20.39504x100.19

Apparently,thefeaturepointP2hasadecentresultthatfeaturelumbarsupport.ButthefeaturepointP3andP4donothavetheperfectsupport.Sowetrytousethefifth-orderpolynomialtodocurvefitting.Thenormalequationofthethird-orderpolynomialis:

0 1 2 3 4 5

yaaxax2ax3ax4ax5

ThenwegettheresultoffittingasFigure2.Figure2showsthecurve.

200

P2

y

100P1

P3 P4 P5

0

0 100 200 300 400 500 600 700 800

x

Figure2

Byyzingthecurvewecanobtainaequation:

y1.52111011x52.8727108x41.7841105x33.7047103x2100

InFigure2,wegetanexpectedresultthatthefeaturepointsP1-P5areallfitthecurveperfectly.TotestwhetherthecurveisagoodresultweconductaresidualysisasFigure3shows.

x10-11 residuals

5thdegree:normofresiduals=1.554e-12

5thdegree

1

0

-1

0 100 200 300 400 500 600 700 800

Figure3

ModelI

Regressionysisisastatisticalprocessforestimatingtherelationshipsamongvariables[5].WeusethismethodtobuildthemodelI.Butthismethodneedsalotofobservationdata,weonlyyzefiveimportantfactorsduetothelimitedtime.Someresearchersusethepressuredistributiondataandsubjectiveevaluationofthetest

resultstobuildtheregressionequation[5].Theyevaluatedtheoverallcomfortinfiveaspects:appearance,adjustablesupport,staticcomfort,etc.Theoverallcomfortismainlyinfluencedbystaticcomfort,blazonryandadjustablesupport.Thestaticcomfortismainlyinfluencedbypaddingmaterial,sittingcomfortandskin.ThemodelstructureisshowedinFigure4.

Figure4

ModelII

Introduction

Thepressureoftheseatbackismainlyfromthepartofthelumbarregionandtheshoulderblade.Andthepressuredistributionoftheseatbackwillchangewiththeangle.Buttheangleformedbyseatbackandhorizontalneisnotunchangeable[6].Inthespine,themostbrawnypartislumbarvertebrabuttheshoulderbladecanalsobearhugepressures.Sothepressuredistributionoftheidealseatisthattheumpressureshouldappearinthejunctionofthethoracicvertebraandthelumbarvertebra.Behindtheumpressureistheinferiorshoulderblade,andtherestofthespine’spressuredescendformthecentertotheperiphery.seatbackcomfortevaluationisacomplexissue.Throughthedistributionofseatbackpressure,wecancomprehensiveyzetheimpactaboutmaterial,skin,shapeandadjustmentmechanismoftheseatbackoncomfort.Afterconductingextensiveexperiments,thescholarssummedupaidealcomfortabledistributionpatternwhichcanmeettheneedsofthemajority.Therefore,wecanassumethatthemoreidealtheseatbackpressuredistributionis,themorecomforttheseatbackis.Withthisevaluationmethod,wecangetridofthedependenceonevaluationofthesubjectivetestandassesstheseatbackcomfortobjectively.However,theabilitytoendurepressureisdifferentindifferentpartsofthebody.Sowhenthedifferentregionsoftheseatbackpressuredistributionpatternchanges,thedegreeofinfluenceinseatbackcomfortisdifferent.

Onthebasisofthebasicmodel,webuildanoptimizedseatbackmodel.Inthismodelweusetheytichierarchyprocess[4](AHP)tocreateacomfortableseatbackmodel.AHPcansystematicyzethecomplexproblems.It posetheproblemtosub-problemsofsinglerulestepbystepinthelightofthenatureoftheissue.Comparedpairwisewiththeeachfactorofthesamelevelcanwegetaweightofevaluationresult,thenmakeanaccurateassessmentoftheproblem.RelyontheidealpressuredistributionpatternandAHP,thenyzethedifferentregionoftheseatbackandbuildtheimprovedmodel.

Symbols

A Judgmentmatrixofcriterionlevel

B Judgmentmatrixofschemelevel

C.I Consistencyindex

R.I TheaverageofConsistencyindex

C.R Consistencyratio

W FeaturevectorofA

V FeaturevectorofB

xi Themeanofdeviationsetinregioni

yi Thevarianceofdeviationsetinregioni

zi Thesumofsquaresofdeviationsetinregioniwi1 Theweightofxi

wi2 Theweightofyi

wi3 Theweightofzi

TheStructureofModelII

Themodelisdividedintothreelevels:

Thehighestlevel:Thecomfortdegreeofseatback.

Thecriterionlevel:Thedegreeofcomfortinfluenceindifferentregion.Accordingtothetestofresistcompression,wechoosefourregionsofhumanback(cervicalspine,shoulderblade,thoracicspine,lumbarspine)tobuildthejudgmentmatrixA.

Theschemelevel:Thedegreeofdifferenceinactualpressuredistributionandidealpressuredistribution.Weusemean,variance,sumofsquaresofdeviationsofdatasettodescribethislevel.Thecloserto0,themoreidealthepressuredistributionis.

ThestructureoftheAHPmodelisshowedinFigure5.

Figure5

TheJudgmentMatrix

Throughthedataofpressuredistribution[6],wegettheconclusionthatthepressureontheshoulderbladeandlumbarspineishigherthantherests.Andtheshoulderbladehashighanti-pressstrength.Accordingtothedegreeofresistcompression,werankthefourregionsasfollows:lumbarspine,cervicalspine,shoulderblade,thecentralofthoracicspine.Thenumber1-9indicatethecriterionincrementally.

Accordingtotheysisofthedataabove,wegetthejudgmentmatrixasfollows:

Table4:TheJudgmentMatrixofCriterionLevel

Cervicalspine

Shoulderblade

Thoracicspine

ThecentralofLumbarspine

Cervicalspine

1

3

0.3333

5

Shoulderblade

0.3333

1

0.2

3

Thoracicspine

3

5

1

7

ThecentralofLumbarspine

0.2

0.3333

0.1429

1

1 3 0.3333 5

AccordingtotheTable4,

A0.3333 1

0.2 3

3 5 1 7

0.2

0.3333

0.1429

1

BycalculatingwegettheC.R=C.I/R.I=0.04<0.1,whentheconsistencyratioC.R≤0.1,webelievethejudgmentmatrixhasgoodconsistency.

Table5:TheJudgmentMatrixofSchemeLevel

Mean

Variance

Sumof

squaresofdeviations

Mean

1

5

7

Variance

0.2

1

3

Sumofsquaresofdeviations

0.1429

0.3333

1

1 5 7

AccordingtotheTable5,

B

0.2

1 3

1

0.1429 0.3333

BycalculatingwegettheC.R=C.I/R.I=0.06<0.1,whentheconsistencyratioC.R≤0.1,webelievethejudgmentmatrixhasgoodconsistency.

3.2.4SolutionsandResults

1)ParameterCalculation

Tocalculatetheweight,wedefinetheparametersasfollows:

nAijj1

n

Wi (1) W(W1,,Wn) (2)

n W W

NWi (3) W'(1,, n) (4)

i1 N N

nBijj1

n

V (5) V(V1,,Vn) (6)

n V V

EVi (7) V'(1,,n) (8)

i1 E E

AndaftercalculatingW'V'T,wegettheweightofevaluationinTable6.

Table6:TheWeightofEvaluation

Scheme

Weight

Scheme

Weight

Meanofcervicalspine

0.1924

Meanofshoulderblade

0.0861

Varianceofcervicalspine

0.0496

Varianceofshoulderblade

0.0222

sumofsquaresofdeviations

ofcervicalspine

0.0213

sumofsquaresofdeviations

ofshoulderblade

0.0095

Meanoflumbarspine

0.4119

Meanofthoracicspine

0.0402

Varianceoflumbarspine

0.1062

Varianceofthoracicspine

0.0104

sumofsquaresofdeviations

oflumbarspine

0.0456

sumofsquaresofdeviations

ofthoracicspine

0.0045

2)SimulationAlgorithm

Step1:Buildtheapproporiatehierarchyby yzingvariousfactors.

Step2:Buildthejudgmentmatrixbycomparingthefactorsinthesamelevel.

Step3:Evaluatethereasonablenessofthematrixbycalculatingtheeigenvalues,eigenvectorsandC.R.

Step4:Gettheweightofthesystemevaluation

3)Thecomfortmodel

Accordingtothealgorithmabove,wecangetthefollowingmodel:

n

Comfort[xiwi1yiwi2ziwi3]

i1

(9)

ModelTesting

Weusethecomfortdegreeofseatbacktotestmodelbyngthecorrelationysis.Theangleofinclinationoftheseatbackinhorizontaldirectionisdifferent,sothepressureonthefourregionsaredifferent.Weneedtoconsiderthedegreeofseatbackindifferentcircumstances.Generally,weconsidertheanglerange100o-120o.ThedegreeofseatbackisshowedinTable7.

Table7:TheDegreeofSeatBack

Number

Theangleofinclination

Thedegreeofseatback

1

100o

0.2279

2

102o

0.2263

3

104o

0.2210

4

106o

0.2116

5

108o

0.2103

6

110o

0.2005

7

112o

0.1921

8

114o

0.1977

9

116o

0.1983

10

118o

0.1988

11

120o

0.1992

Thedegreeofseatbackindicatethesenseofcomfort.Thelowerthedegreeis,themorecomfortabletheseatbackis.FromtheresultsonTable7,wecancometoaconclusionthattheangleofinclinationabout112oisthemostcomfortableposture.Besidestheseatbackisthinenough,weshouldensuretheseatbackfitthecurvewedesign.Andweshouldaddpaddingatthebottomoftheseatbacktoensuretheangleofseatbackandhorizontaldirectionatabout112o.It’sbettertohaveadjustablesupportofthecervicalspinefordifferentpassengers.

Conclusions

First,wechoosefivepointsasthefeaturepointsofthespine.Afterestimatingtheparametersinhumandimensionsofadults,wefitacurvebyusingthefifth-orderpolynomial.

Second,webuildacomfortmodelbyusingtheyticHierarchyProcesstogetagoodcomfortevaluation.Thecomfortmodelcanevaluatethedegreeofseatbackcomfortinabetterway.Andthedegreeofseatbackindicatethesenseofcomfort.Thelowerthedegreeis,themorecomfortabletheseatbackis.Finally,wetestthemodelandgetaconclusionthatthebodywillfeelthemostcomfortablewhentheangleisabout112o.Themodelshouldaddpaddingatthebottomoftheseatbacktoensuretheangleofseatbackandhorizontaldirectionatabout112o.

AdvertisingSheet

Sittingisthemostfrequentbodyposture:wesitatwork,atschool,inthecar,onthebus,onthetrain,athomeinfrontofTV,toeat,torestandsoon.Youareprobablysittingdownrightnow.Generally,seatsshouldallowyourbodytobecomfortableandnotrestricted.Inaddition,achairshouldenableyoutochangepostureatintervals,ensuringthatdifferentgroupsofmusclescanbeusedforsupport,andthatnoparticulargroupofmusclesgetstired.

But,doyouknowwhatisthemostcomfortablechair?

Thehumanvertebralcolumnisthebackboneofthehumanskeleton,consistingofcervicalspine,thoracicspine,lumbarspine,sacrumandcoccyx.Accordingtotheergonomics,themain pointsareonthelumberspine,shoulderbladeandcervicalspinewhenthebodyinthecomfortablestate.Ifyouchoosetotravelbyne,youneedtohaveadjustablesupportofyourcervicalspineandlumbarspinetoenjoyacomfortableandpleasantjourney.Wecandothisinourairline.

Whycanwedoit?Atpresent,mostofthecivilianaircraftareAirbusandserieswhicharecreatedabroad.ThesizeoftheseatisbasedonthedimensionoftheEuropeanandAmericanwhichislargerthan.Thismayresultinasenseofpressureduetothehighseatback.Forthisreason,wetookthedimensionsofintoaccount.Weestablishedaseatbackcurvebyyzingreliabledataonthespinemodelandanthropometry.Andweconsideredthemostcomfortableangleofhumanspine,thenadjustedthepaddingandcurvetooptimizetheseat.Wedesignedasampleandwedidalotoft

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論