版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年河北省保定市成考專升本高等數(shù)學(xué)一自考測試卷(含答案及部分解析)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.A.3yx3y-1
B.yx3y-1
C.x3ylnx
D.3x3ylnx
2.個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則是發(fā)生在()
A.前慣例層次B.慣例層次C.原則層次D.以上都不是
3.A.A.1/4B.1/2C.1D.2
4.
5.A.
B.
C.
D.
6.當(dāng)α<x<b時(shí),f'(x)<0,f'(x)>0。則在區(qū)間(α,b)內(nèi)曲線段y=f(x)的圖形A.A.沿x軸正向下降且為凹B.沿x軸正向下降且為凸C.沿x軸正向上升且為凹D.沿x軸正向上升且為凸
7.
8.
9.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
10.
11.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)
12.
13.A.A.
B.
C.
D.
14.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合
15.
16.
17.收入預(yù)算的主要內(nèi)容是()
A.銷售預(yù)算B.成本預(yù)算C.生產(chǎn)預(yù)算D.現(xiàn)金預(yù)算
18.
19.若,則下列命題中正確的有()。A.
B.
C.
D.
20.鑒別的方法主要有查證法、比較法、佐證法、邏輯法。其中()是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。
A.查證法B.比較法C.佐證法D.邏輯法二、填空題(20題)21.
22.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.23.
24.
25.
26.
27.
28.
29.
30.31.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為______.
32.設(shè)y=cos3x,則y'=__________。
33.若當(dāng)x→0時(shí),2x2與為等價(jià)無窮小,則a=______.34.
35.
36.
37.38.39.設(shè),則y'=______。
40.
三、計(jì)算題(20題)41.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
42.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).43.
44.
45.證明:
46.求微分方程y"-4y'+4y=e-2x的通解.
47.
48.49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.50.將f(x)=e-2X展開為x的冪級(jí)數(shù).51.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
52.求曲線在點(diǎn)(1,3)處的切線方程.53.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則55.56.57.求微分方程的通解.58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.
四、解答題(10題)61.設(shè)x2為f(x)的原函數(shù).求.
62.
63.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).
64.(本題滿分10分)
65.求由曲線y=2x-x2,y=x所圍成的平面圖形的面積S.并求此平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx.
66.
67.計(jì)算,其中D為曲線y=x,y=1,x=0圍成的平面區(qū)域.68.69.用鐵皮做一個(gè)容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時(shí),所使用的鐵皮面積最小。70.五、高等數(shù)學(xué)(0題)71.
,求xzx+yzy=_____________。
六、解答題(0題)72.
參考答案
1.D
2.C解析:處于原則層次的個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則。
3.C
4.A
5.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
6.A由于在(α,b)內(nèi)f'(x)<0,可知f(x)單調(diào)減少。由于f"(x)>0,
可知曲線y=f'(x)在(α,b)內(nèi)為凹,因此選A。
7.D
8.B解析:
9.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
10.C解析:
11.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點(diǎn)x1=1,x2=2。
當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。
當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。
當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
12.A解析:
13.D
14.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時(shí),兩平面平行;
當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
15.C解析:
16.C
17.A解析:收入預(yù)算的主要內(nèi)容是銷售預(yù)算。
18.B解析:
19.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
20.C解析:佐證法是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。
21.3x2+4y22.1/2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)Y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
23.
24.
25.e2
26.發(fā)散本題考查了級(jí)數(shù)的斂散性(比較判別法)的知識(shí)點(diǎn).
27.
解析:
28.
解析:
29.3yx3y-13yx3y-1
解析:30.ln(1+x)+C本題考查的知識(shí)點(diǎn)為換元積分法.
31.0本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.
通常求解的思路為:
先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點(diǎn)x1,…,xk.
比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點(diǎn).
由y=x3-2x+1,可得
Y'=3x2-2.
令y'=0得y的駐點(diǎn)為,所給駐點(diǎn)皆不在區(qū)間(1,2)內(nèi),且當(dāng)x∈(1,2)時(shí)有
Y'=3x2-2>0.
可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點(diǎn)為x=1,最小值為f(1)=0.
注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.
本題中常見的錯(cuò)誤是,得到駐點(diǎn)和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯(cuò)誤地比較
從中確定f(x)在[1,2]上的最小值.則會(huì)得到錯(cuò)誤結(jié)論.
32.-3sin3x33.6;本題考查的知識(shí)點(diǎn)為無窮小階的比較.
當(dāng)于當(dāng)x→0時(shí),2x2與為等價(jià)無窮小,因此
可知a=6.
34.
35.
36.37.本題考查的知識(shí)點(diǎn)為重要極限公式。38.1;本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.
39.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
40.
41.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
42.
列表:
說明
43.
則
44.
45.
46.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
47.
48.
49.由二重積分物理意義知
50.
51.
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.
54.由等價(jià)無窮小量的定義可知
55.
56.
57.
58.
59.函數(shù)的定義域?yàn)?/p>
注意
60.由一階線性微分方程通解公式有
61.解法1
由于x2為f(x)的原函數(shù),因此
解法2由于x2為f(x)的原函數(shù),因此
本題考查的知識(shí)點(diǎn)為定積分的計(jì)算.
62.
63.
64.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分,選擇積分次序.
積分區(qū)域D如圖1—3所示.
D可以表示為
【解題指導(dǎo)】
如果將二重積分化為先對(duì)x后對(duì)y的積分,將變得復(fù)雜,因此考生應(yīng)該學(xué)會(huì)選擇合適的積分次序.65.所給平面圖形如圖4-1中陰影部分所示.
由,可解得因此
:本題考查的知識(shí)點(diǎn)為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職(生物制藥技術(shù))生物藥物制備綜合測試題及答案
- 2025年大學(xué)審計(jì)學(xué)(審計(jì)案例分析)試題及答案
- 2025年大學(xué)二年級(jí)(飛行器制造工程)飛行器制造工藝試題及答案
- 2025年中職審計(jì)學(xué)(財(cái)務(wù)審計(jì))試題及答案
- 2025年大學(xué)二年級(jí)(社會(huì)工作)老年社會(huì)工作試題及答案
- 2025年大學(xué)生物學(xué)(生態(tài)學(xué)專題)試題及答案
- 初三化學(xué)(化學(xué)計(jì)算)2026年下學(xué)期期末測試卷
- 2025年高職第一學(xué)年(空中乘務(wù))客艙服務(wù)禮儀基礎(chǔ)試題
- 2025年大學(xué)護(hù)理學(xué)(傳染病預(yù)防)試題及答案
- 2025年高職裝配式建筑構(gòu)件生產(chǎn)(模具操作)試題及答案
- 醫(yī)療器械銷售年終工作總結(jié)
- 快遞行業(yè)運(yùn)營部年度工作總結(jié)
- 《蘇教版六年級(jí)》數(shù)學(xué)上冊期末總復(fù)習(xí)課件
- 上海市二級(jí)甲等綜合醫(yī)院評(píng)審標(biāo)準(zhǔn)(2024版)
- 油漆班組安全晨會(huì)(班前會(huì))
- 消費(fèi)類半固態(tài)電池項(xiàng)目可行性研究報(bào)告
- 山東省濟(jì)南市2024年1月高二上學(xué)期學(xué)情期末檢測英語試題含解析
- 口腔門診醫(yī)療質(zhì)控培訓(xùn)
- (正式版)JBT 9229-2024 剪叉式升降工作平臺(tái)
- HGT4134-2022 工業(yè)聚乙二醇PEG
- 小學(xué)教職工代表大會(huì)提案表
評(píng)論
0/150
提交評(píng)論