課件mth017數(shù)學系線性代數(shù)algebra6rank_第1頁
課件mth017數(shù)學系線性代數(shù)algebra6rank_第2頁
課件mth017數(shù)學系線性代數(shù)algebra6rank_第3頁
課件mth017數(shù)學系線性代數(shù)algebra6rank_第4頁
課件mth017數(shù)學系線性代數(shù)algebra6rank_第5頁
已閱讀5頁,還剩76頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

Algebra6:TheRankofTheRankodMatrix矩陣的秩,是矩陣 概念之一性方程組的研究中,矩陣“秩”這個概念有關鍵作用為此,首先介紹矩陣的子(行列)式和代 式的概念

矩陣的子(行列)式

A=

a22a2n

k行、k an1a22amn

kk階子式 -3

A=

-5

det

-3

取第1、3和4行,第2、4和5 得到三階子方陣和3 A=

-5

det

2 Therankofa

A=

2 an1a22amnAk階子方陣是可逆矩陣。k+1階以上的子方陣都是不可逆的,A的秩(rank)k.Ak階子行列式不等于零,但所有k+1階以上的子行列式都等于零。則矩陣的秩等于k:

1 9 A=

B=

r(B)=1 0r(A)=

C= 1

=2?

0

00112 2=00112

1=

1= 0r(C)=

0

-3

A= -5

=-14?

Thereexistsasub-determinantoforder4thatisnonzero.SothattherankofAisgreaterthanorequalto4.Intheotherhand,thedimensionofthismatrix is4a5.Sothat,therankofAnotgreaterthan4.ThereforetherankofAequals一個4行5列的矩陣,它的秩不會超過ThepropertiesofrankofLetAbeamatrixofdimensionman,r(A)£

12

A=

22

r(B)

a25

B=

In

r(A)£r(A)£min{m,

42 Ifr(A)=m,thenthematrixiscalledrowfullrank(行滿秩):Ifr(A)=nthenthematrixiscalledrowcolumnrank(列滿秩)r(AT)=r(nnThenecessaryandsufficientconditionfortheinvertibilityofmatrixAisdet(A)π0.初等變換不改變矩陣的秩r(AB)£min{r(任意梯形矩陣的秩,等于它的非零行數(shù)2020122100000000000000000A=000

,r(A)=B=

r(B)3

就是該矩陣的秩 對矩陣AEshelonExample:Findtherankoffollowing0010011111111110011001fi00A=00

- -

11

00

11

r

r1)fi

r(A)=

Example:FindtherankofmatrixA r12(-

r(-1)fi

- 4A=

r(-

- 4

7

- 4 0 0

r(A)=a11x1+a12

++a1nxn= x+ x++ 21 Matrixof

++amnxn=augmented

b1 bA=

A=

2

b m mn

m mDoesthesystemhaveHowmanysolutionsdothesystemWhataretheformulaofthegenerala11x1+a12

++a1nxn= x+

x++ =

21 Linear

++amnxn=①Thesystemhasnontrivialsolutionsifandonlyifr(A)<n②Supposethatr(A)<n,thentherearek=n-r(A)arbitraryconstantsintheformulaofgeneralsolutionsofthehomogeneoussystems.③Therearek=n-r(A)linearindependentvectorsinthesystemoffoundationalsolutions.方程通解表達式中含有k=n-r(A)基本解系中有k=n-r(A)Example:Solvethehomogeneouslinear x12x24x3+x4 2x+ +8x =

MatrixofA

r(-

1 fi

0r23

0rA)2n4有非平凡解k=n-r(A)=2個向量 x1+2x2+4x3+x4=

1 2x+ +8x+ = 系數(shù)矩陣 =

0r(1

-1/

x+2x- x= fi 3/

x1=-2x2+5

1 x+ x+

x4=

=-1x -2t+1t

1 52

5x2= x2= 5

=t1+t0

=t+t x

-1

10

2-1

4=

3

10

10x4

0 1

基礎解系v1,Example:Solvethe x1+2x2+ 3x+

3 2x+5x+

Matrixof

A= 7 x1+

+4x3=

4 3

r(-

1

r(-1)fi

7 r(-1)

4

x1 =2 x 3 Examplex+

x0l (x,x,x)T=(0, matrixofl l1=l

1- 1+

l1時方程組有非零解l=1x1+x2+x3=

x+x+x=

-

+x3=

11 x1+x2+x3

x1+x2=-

4x=-

x3=

x1=-

x2=-2x

1 1- 3 2 2- 3

1

=

-t

=t-

=t3

=t

3=v 2x

2 2

3

1 齊次方程組定理的合理解釋(用例題解釋a11x1+a12x2+a13x3+a14

+a15x5= x+ x+ x+ x+ x=

a12a1521

a31x1+a32x2+a33x3+a34

+a35x5=

25 x+ x+ x+ x+ x=

41 x+ x+ x+

+a55x5=

51

+a64

+a65x5=若r(A)=3<

c15

x+

+cx+

x+ x=

25

11

c25 c

c22

+

+c25x5= 0

c33x3+c34x4+c35x5=0 0

0 0x4x5c11x1+c12

+c13x3=-c14x4-

+c23

- 于是方程組有無窮多組解.t1和t2 c15 25

c45

55 0

x+ x+cx+ x+cx=

11

c22

+c23x3+c24

+c25x5=

+c35x5= c44

+c45x5=c55x5=Non-HomogeneousLineara11x1+a12

++a1nxn=

x1

b1x x+ x++ =x

x

b21

2

b= 2Ax=

++amnxn=

xn

bmDoesthesystemhaveHowmanysolutionsdothesystemWhataretheformulaofthegeneralMatrixof Augmented

b1

b2A= 2n

A=

mnThesystemisconsistentifandonlyifr(A)=r(Thesystemhasuniquesolutionifandonlyifr(A)=r(A)=Thesystemhasinfinitesolutionsifandonlyifr(A)=r(A)<Thegeneralsolutioncontaink=n-r(A)arbitrary(1)線性方程組相容的充分必要條件是r(A)=r(A).(2)線性方程組有惟一解的充分必要條件是rA)rA)n.(3)rA)rAn.例3x1-7x2+14x3-8x4= x-4x+3x

x-3x+4x-

2x1-15x2-x3+

判斷系數(shù)矩陣和增廣矩陣的秩的關系將方程組化為等價方程組,方便求解3424r-2 34455 fi22 33

-2 2 2

244

0 00 0

306系列變換00

r(A)=r(A)=2<60600Thesystemoflinerequationsis33

-2 2 2

244

0 00 0

30600系列變 00

66000

r(A)=r(A)=2<Thesystemoflinerequationsis06 06

000 00Thesystemoflinerequationsx1-4x2+3x3-x4=- x1-4x2=-3x3+x4-xxxx2+

-x4=

2=6-

+

=

,

x1-4x2=-3t12x =6-t+t

+

-2x1=22-7t1+ =6-t+= =

x 6 2= -t+tx3 0 1 2 0 x4 0 Thegeneralsolutionofthelinear

x 6

2=

=x+tv+v 0

10

2

1 x 0 0 4

6

,v2=0 0 t1v1+t2v2isthegeneralsolutionofthehomogeneousandxisaparticularsolution.ofthenonhomogeneousa11x1+a12x2+a13x3+a14

+a15x5= x+ x+ x+ x+ x=21 a31x1+a32

+a33x3+a34x4+a35x5= x+ x+

x+

x+

=41

51

+a52

+a53x3+a54x4+a55x5=

+a63x3+a64x4+a65x5= a12a15

b1

b

a22a25

2

a61a62a65

6rA)rA3 aaa 2 00000000000000000

0 0 0a11x1+a12

+a13x3+a14x4+a15x5= ax+ax+ax+ax= a 33x3+a34x4+a35x5=ax5x6移至等式右端作為自由變量a11x1+a12

+a13x3=b1-a14x4-a15aa 22

+a23x3=b2-a24x4-a25 a33x3=b3-a34x4-a35x5t1x6a11x1+a12

+a13x3=b1-a14t1-aa 22

+a23x3=b2-a24t1-a a

=b-at-a

34

35繼續(xù)求解,通解表達式中含有5-3=2個任意常數(shù)rA)rA) aaa 2

a 4

0 5個方程,5rA)4,rA) aaa b 2

b 4 00 00a11x1+a12

+a13x3+a14x4+a15x5= a22x2+a23x3+a24x4+a25x5= a33

+a34x4+a35x5= 0x1+0x2+0x3+0x4+0x5=r(A)<r(A)Theremustbeequationwhichis3x1-7x2+14x3-8x4= x-4x+3x

x-3x+4x-

2x1-15x2-x3+

33-224

24

4 4

33

-2 2 2

244

0 00 0

30600系列變 00

66000

r(A)=r(A)=2<Thesystemoflinerequationsis06 06

000 00Thesystemoflinerequationsx1-4x2+3x3-x4=- x1-4x2=-3x3+x4-xx 2+

-x4=

=6-x+

=

,

x1-4x2=-3t12x =6-t+t

+

-2x1=22-7t1+ =6-t+= =

x 6 2= -t+tx3 0 1 2 0 x4 0 Thegeneralsolutionofthelinear

x 6

2= -

=x+tv+vx 0 2

1 3 x4 0 6 wherex=

,v1=,v2=0

2x1-3x2+6x3-5x4=

x2-

+x4=1

A=

k-r(-1)fi

k= r(A)=r(

k-當k=7660111fi11000000

Afi

fi00

11

x1-3x3-x4=

x1=3x3+x4+xxx3=t1,x4=

-

+x4

= - x

4t-t

1 2=

=t+t

+

1

20 xt xt4

即nndimensionv1 u1

v1+u1

v u lv

+u v=2,u=2,lv= 2,u+v=

2,q= v u lv

+u

n n n n 向量的加法(addition)和數(shù)乘(scalarmultiplication),(LinearSpace)

是一組n維向量,k,k ab=ka+ a a,a

的一個線性組合(linear如果向量b等于a1,a2,,am b可以由a1,a2,,am線性表示

-

5

=

=2

b=

-

=21-32 1,

=-

2

-6

0 2 ba1a2Example:Inthevectorspaceofn

e1= ,111 1 b1b Theneachvectorb=2inRn,theequation b bnb1 1 b 1

2=b +b ++b

b=be+be+b 1 2 n

1 b 1n

IfVisanonemptysubsetofRnthatsatisfiestheax?Vwheneverx?Vforanyscalarx+y?Vwheneverx?Vandy?VThenVisasubspaceofRn什么是子空間設VR3中xOy平面上所有向量組成的集合,是R3的一個二維子空間。LR3中經(jīng)過原點的一條直線,LR3LetC[a,b]denotthesetofallreal-valuedcontinuousfunctionson[a,b]:(f+g)(x)=f(x)+g(x),(af)(x)=af(ThenC[a,b]isavectorThesetofallpolynomialsisasubspaceofC[a,ThesetofalldifferentiablefunctionsisasuubspaceofLetv1,v2,,vmbevectorsinavectorspaceVAsuma1v1+a2v2++amvm,wherea1,a2,,amarescalars,iscalledalinearcombinnationofv1,v2,,vm.Thesetofalllinrarconbinationsofv1,v2,,vmiscalledthespanofv1,v2,,vm,thatdenotedbyspan(v1,v2,,vm).Thesetspan(v1,v2,,vm)isasubspaceofVThenullspaceofamatrixandthesolutionsofhomogenouslinearsystem

x1

a12a1n x+ x++

21

x=x2

a22a2n

x+ x++

n1

n

xn

an1an2anna11 a12

a1n

x 21+x

22++x

2n= 1 2

n

n1 n2 xa+xa++xa a11x1+a12

++a1mxm= x+ x++ =21

++anmxm=

y1x yx=2,y=2

x xnIfxandyaresolitionsofthehomogeneouethenax+byiealsosolutionofthissystem.(Inwhich,aandbarearbitraryscalars)

yny齊次線性方程組的解集合,就是系數(shù)矩陣的零空間(NullN(A)={x?Rn|Ax=x= 平凡解(trivial

=00這個解空間完全由系數(shù)矩陣AN(A).N(A)是所有滿足Ax=0的那些向量組成的集合.A的零空間.Linear(向量集的線性無關性Lineardependence(線性相關 或者成倍數(shù)關系:b=aaora=bb三個向量a和b c=aa+bb在 Rn中,稱向量集{v,v,,v}線性相關 vm=a1v1+a2v2++am-1vm-Example: e=0, =1,e=

Thesetofvectorsislinear

Example:

3

Thissetofvectorsis

c=a-a=1,b=2,c=-

Example:在 e=,e=,,e=

Thesetofvectorsislinearindependent. Definition:Lineardependence(線性相關Thevectorsv1,v2,,vminavectorspaceVaresaidtolinearlydependentiftherearenontrialchoicesofscalarsforwhichthelinearcombination 在n Rn中,稱向量集{v,v,,v} Thesesimpleconceptsprovidethekeytounderstandingthestructureofvectorspaces.DefinitionLinearindependence(線性無關如果它不是線性相關,則稱它們是線性無關{v1v2,vm}是指其中任何一個向量都不能由其它向量線性表示Therigorousdefinitionoflinearlyindependence:Thevectorsv1,v2,,vminavectorspaceVaresaidtobeallthescalarsc1,c2,,cmmustequal0.因為方 矩陣和線性方程組的工具研究向量集的有關問題如何判斷線性相關,還是線性無關a11 a12 a1n x 21+x

22++x

2n=

1 2

n

n1 n2 nn xa+xa++x = 又轉(zhuǎn)化為系數(shù)矩陣的求秩(rank)Proposition1:Thenecessaryandsufficientconditionforthelinearlydependentisthelinearsystemhasnontrivialsolutions.Proposition2:Thenecessaryandsufficientconditionforthelinearlydependentisthattherankofthecoefficientmatrixlessthann.Key{v1v2,,vm}線性相關的充分必要條件是x1v1+x2v2++xmvm=將向量v1,v2,, 按列排成n·m矩陣VV vmVx1v1+x2v2++xmvm={v1v2,vm}r(V{v1v2,vm}r(VDeterminewhetherornotthesetofvectorsis a1=(1,1,1),a2

=

,a3

A= Convertitintoaechelon

0 fi

0r(-1),r(-1)fi

0 0 R(A)=3,所以這個向量集線性無關 Determinewhetherornotthatthesetofvectorsislinearlydependent. a T,a= T,a=

3

3

10

19

~

~

1

1

3 3 ~ ~

raaa= 19

1 0

Thereforethissetofvectorsislinearly a(1,11)Ta(025)Ta(13 解 A= r(-

fi

rA)23fi線性相關Supposethatthesetofvectors{,

}islinearly

aa 1 aLetb1=a1+a2,b2=a2+a3,b3=a1+a3 Showthat{b1,b1,b3}arealsolinear Onthecontrary,wesupposethat{b1,b2,b3}arelinearelythenthereexistconstantsk1,k2andk3thatisnottrivialsuch That k(

)+k(

)+k(+)=0.1a

a2 2a a3 3a (k1+k3)a1+(k1+k2)a2+(k2+k3)a3=0.(k+k)a+(k+k

k1+k3=0,k1+k2=0,k2+k3=0.k1+k3=Thuswehavethelinearsystem k1+k2=0k+k= Thecoefficient

=2?Thislinearsystemhasonlytrivialk1=k2=k3=0. Thus,{b1,b2,b3}arelinearely什么是齊次線性方程組的基礎解系(基本解組)

x+ x++ 21

假設下列m,a ,,,a 如果這m這組向量向量是線性無關的Systemofsolutions).Example:Solvethelinear x1+2x2+4x3+x4=2x+4x+8x+ = 3x+6x+ = Solution:

r(-

1 fi 0 r(-

-1 1

5 r(-

3r23

10fi 10

0r21(-4) 00 00 Example:Solvethelinear x1+2x2+4x3+x4=2x+4x+8x+ = 3x+6x+ = Solution:

r(-

1 fi 0 r(-

-1 1

5 r(-

3r23

10fi 10

0r21(-4) 00 00 x1+2x2+4x3+x4=

112x+4x+8x+ =

3

Afi

+ =

0 0

1000

x=- +1x1+2x2-5x4=

fi x3x3x+

x=

=-

Letx2=t1,x4=t2

x=-2t+1 5Thesolutionsofthesystemis

= 10 x=-2t+1

5

=

a=1,b=

0

3t =t 10

-

Thesystemofx=x=

x 1

2=t +t

xtat x 10

2 3 3 x4 0

-

Theconstantst1andt2canbearbitrary x1+2x2+3x3-x4= x+ +4x+ Example: 2x+ +6x+ x1-2x2-3x3+4x4=Solution:Reducethecoefficientmatrixintoreduced

-1r(-1)

3

4 4 r13(-2)fi

fi 4

6

1

- 4

3

0

x1+2x3=

fi

x+1

原方程組化為 22 r(-

4

x1+2x3=

x+x+2 2

+2x4=

x2=-2x

x

1Let

=t

=-

x -

2=t 2

x=x=

x3

1

4 0 1 0

Thesystema11x1+a12

a11x1+a12

x+ x++

x+

x++ 21

21

KeyThesetofsolutionsofthehomogeneoussystemisaThedifferenceoftwosolutionsofnon-homogenneoussystemisasolutionofhomogeneoussystem.Thegeneralsolutionsisthe非齊次方程組通解=非齊次方程組一個特解+x=x0+c1x1++ RankofVectorSet(向量集的秩向量集的 alLinearlyindependent(2)那么這個子集就稱為原向量集的一個極大線性無關組 allinearlyindependencesubset)LetV={v1,v2,,vm}beasetofvectors.U={vi1,vi2,,vik}beasubsetofVItissaidthatthesubsetU={,v,, isa allinearlyindependentsubset,ifandonlyif(1)vi1,v12,,vikarelinear(2)Alltheotherscanbelinearlyexpessusevi1,v12,,vik

v=0, =1,v=0,

v1,v2,v3is allinearlyindependentv1,v2,v4isalso allinearlyindependentLet{v1,v2,,vm}beasetof{v1,v2,v3}is allinearlyindependentProof:在向量集中任取4u1u2u3u4 只有平凡解[x Since{v1,v2,v3}is allinearlyindependentSothatwehaveu1=a11v1+a21v2+u4=a14v1+a24v2+a34v3 (a1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論