版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市黃浦區(qū)市級(jí)名校2024年高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的右焦點(diǎn)為F,過右頂點(diǎn)A且與x軸垂直的直線交雙曲線的一條漸近線于M點(diǎn),MF的中點(diǎn)恰好在雙曲線C上,則C的離心率為()A. B. C. D.2.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.3.已知點(diǎn)在雙曲線上,則該雙曲線的離心率為()A. B. C. D.4.已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有一點(diǎn),則().A. B. C. D.5.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.6.復(fù)數(shù)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.將一塊邊長(zhǎng)為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.128.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i9.若、滿足約束條件,則的最大值為()A. B. C. D.10.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)P是C的右支上一點(diǎn),連接與y軸交于點(diǎn)M,若(O為坐標(biāo)原點(diǎn)),,則雙曲線C的漸近線方程為()A. B. C. D.11.M、N是曲線y=πsinx與曲線y=πcosx的兩個(gè)不同的交點(diǎn),則|MN|的最小值為()A.π B.π C.π D.2π12.函數(shù)f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數(shù)的圖象向右平移個(gè)單位后得到的函數(shù)圖象關(guān)于直線x=對(duì)稱,則函數(shù)f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)二、填空題:本題共4小題,每小題5分,共20分。13.某校為了解家長(zhǎng)對(duì)學(xué)校食堂的滿意情況,分別從高一、高二年級(jí)隨機(jī)抽取了20位家長(zhǎng)的滿意度評(píng)分,其頻數(shù)分布表如下:滿意度評(píng)分分組合計(jì)高一1366420高二2655220根據(jù)評(píng)分,將家長(zhǎng)的滿意度從低到高分為三個(gè)等級(jí):滿意度評(píng)分評(píng)分70分70評(píng)分90評(píng)分90分滿意度等級(jí)不滿意滿意非常滿意假設(shè)兩個(gè)年級(jí)家長(zhǎng)的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級(jí)各隨機(jī)抽取1名家長(zhǎng),記事件:“高一家長(zhǎng)的滿意度等級(jí)高于高二家長(zhǎng)的滿意度等級(jí)”,則事件發(fā)生的概率為__________.14.戊戌年結(jié)束,己亥年伊始,小康,小梁,小譚,小楊,小劉,小林六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人,分別奔赴四所不同的學(xué)校參加演講,則不同的分配方案有_________種(用數(shù)字作答),15.函數(shù)的定義域是__________.16.執(zhí)行以下語句后,打印紙上打印出的結(jié)果應(yīng)是:_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某動(dòng)漫影視制作公司長(zhǎng)期堅(jiān)持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動(dòng)漫題材,創(chuàng)作出一批又一批的優(yōu)秀動(dòng)漫影視作品,獲得市場(chǎng)和廣大觀眾的一致好評(píng),同時(shí)也為公司贏得豐厚的利潤(rùn).該公司年至年的年利潤(rùn)關(guān)于年份代號(hào)的統(tǒng)計(jì)數(shù)據(jù)如下表(已知該公司的年利潤(rùn)與年份代號(hào)線性相關(guān)).年份年份代號(hào)年利潤(rùn)(單位:億元)(Ⅰ)求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司年(年份代號(hào)記為)的年利潤(rùn);(Ⅱ)當(dāng)統(tǒng)計(jì)表中某年年利潤(rùn)的實(shí)際值大于由(Ⅰ)中線性回歸方程計(jì)算出該年利潤(rùn)的估計(jì)值時(shí),稱該年為級(jí)利潤(rùn)年,否則稱為級(jí)利潤(rùn)年.將(Ⅰ)中預(yù)測(cè)的該公司年的年利潤(rùn)視作該年利潤(rùn)的實(shí)際值,現(xiàn)從年至年這年中隨機(jī)抽取年,求恰有年為級(jí)利潤(rùn)年的概率.參考公式:,.18.(12分)已知橢圓:的離心率為,右焦點(diǎn)為拋物線的焦點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)為坐標(biāo)原點(diǎn),過作兩條射線,分別交橢圓于、兩點(diǎn),若、斜率之積為,求證:的面積為定值.19.(12分)已知數(shù)列,滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)分別求數(shù)列,的前項(xiàng)和,.20.(12分)設(shè)(1)證明:當(dāng)時(shí),;(2)當(dāng)時(shí),求整數(shù)的最大值.(參考數(shù)據(jù):,)21.(12分)在直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.設(shè)點(diǎn)在圓外.(1)求的取值范圍.(2)設(shè)直線與圓相交于兩點(diǎn),若,求的值.22.(10分)某中學(xué)準(zhǔn)備組建“文科”興趣特長(zhǎng)社團(tuán),由課外活動(dòng)小組對(duì)高一學(xué)生文科、理科進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為“理科方向”學(xué)生.理科方向文科方向總計(jì)男110女50總計(jì)(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
設(shè),則MF的中點(diǎn)坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【題目詳解】雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,M所在直線為,不妨設(shè),∴MF的中點(diǎn)坐標(biāo)為.代入方程可得,∴,∴,∴(負(fù)值舍去).故選:A.【題目點(diǎn)撥】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意構(gòu)造的齊次方程.2、A【解題分析】
根據(jù)復(fù)數(shù)的基本運(yùn)算求解即可.【題目詳解】.故選:A【題目點(diǎn)撥】本題主要考查了復(fù)數(shù)的基本運(yùn)算,屬于基礎(chǔ)題.3、C【解題分析】
將點(diǎn)A坐標(biāo)代入雙曲線方程即可求出雙曲線的實(shí)軸長(zhǎng)和虛軸長(zhǎng),進(jìn)而求得離心率.【題目詳解】將,代入方程得,而雙曲線的半實(shí)軸,所以,得離心率,故選C.【題目點(diǎn)撥】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.4、B【解題分析】
根據(jù)角終邊上的點(diǎn)坐標(biāo),求得,代入二倍角公式即可求得的值.【題目詳解】因?yàn)榻K邊上有一點(diǎn),所以,故選:B【題目點(diǎn)撥】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡(jiǎn)單題目.5、D【解題分析】試題分析:先畫出可行域如圖:由,得,由,得,當(dāng)直線過點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,最大值為3;當(dāng)直線過點(diǎn)時(shí),目標(biāo)函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點(diǎn):線性規(guī)劃.6、A【解題分析】
試題分析:由題意可得:.共軛復(fù)數(shù)為,故選A.考點(diǎn):1.復(fù)數(shù)的除法運(yùn)算;2.以及復(fù)平面上的點(diǎn)與復(fù)數(shù)的關(guān)系7、D【解題分析】
推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【題目詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【題目點(diǎn)撥】本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.8、B【解題分析】分析:化簡(jiǎn)已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡(jiǎn)可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點(diǎn)睛:本題考查復(fù)數(shù)的代數(shù)形式的運(yùn)算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.9、C【解題分析】
作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時(shí)對(duì)應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【題目詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示.由,得,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),該直線在軸上的截距最大,此時(shí)取最大值,即.故選:C.【題目點(diǎn)撥】本題考查簡(jiǎn)單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值,一般利用平移直線的方法找到最優(yōu)解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.10、C【解題分析】
利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!绢}目詳解】設(shè),,由,與相似,所以,即,又因?yàn)?,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【題目點(diǎn)撥】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力。11、C【解題分析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.12、D【解題分析】
由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對(duì)稱,得到,由此求得滿足條件的的值,即可求得答案.【題目詳解】分析:由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對(duì)稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因?yàn)楹瘮?shù)的最小正周期是,所以,解得,所以,將該函數(shù)的圖像向右平移個(gè)單位后,得到圖像所對(duì)應(yīng)的函數(shù)解析式為,由此函數(shù)圖像關(guān)于直線對(duì)稱,得:,即,取,得,滿足,所以函數(shù)的解析式為,故選D.【題目點(diǎn)撥】本題主要考查了三角函數(shù)的圖象變換,以及函數(shù)的解析式的求解,其中解答中根據(jù)三角函數(shù)的圖象變換得到,再根據(jù)三角函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、0.42【解題分析】
高一家長(zhǎng)的滿意度等級(jí)高于高二家長(zhǎng)的滿意度等級(jí)有三種情況,分別求出三種情況的概率,再利用加法公式即可.【題目詳解】由已知,高一家長(zhǎng)滿意等級(jí)為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長(zhǎng)滿意等級(jí)為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長(zhǎng)的滿意度等級(jí)高于高二家長(zhǎng)的滿意度等級(jí)有三種情況:1.高一家長(zhǎng)滿意,高二家長(zhǎng)不滿意,其概率為;2.高一家長(zhǎng)非常滿意,高二家長(zhǎng)不滿意,其概率為;3.高一家長(zhǎng)非常滿意,高二家長(zhǎng)滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:【題目點(diǎn)撥】本題考查獨(dú)立事件的概率,涉及到概率的加法公式,是一道中檔題.14、1080【解題分析】
按照先分組,再分配的分式,先將六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人有種,再分別奔赴四所不同的學(xué)校參加演講有種,然后用分步計(jì)數(shù)原理求解.【題目詳解】將六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人有種,再分別奔赴四所不同的學(xué)校參加演講有種,則不同的分配方案有種.故答案為:1080【題目點(diǎn)撥】本題主要考查分組分配問題,還考查了理解辨析的能力,屬于中檔題.15、【解題分析】由,得,所以,所以原函數(shù)定義域?yàn)?,故答案?16、1【解題分析】
根據(jù)程序框圖直接計(jì)算得到答案.【題目詳解】程序在運(yùn)行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應(yīng)是:1故答案為:1.【題目點(diǎn)撥】本題考查了程序框圖,意在考查學(xué)生的計(jì)算能力和理解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),該公司年年利潤(rùn)的預(yù)測(cè)值為億元;(Ⅱ).【解題分析】
(Ⅰ)求出和的值,將表格中的數(shù)據(jù)代入最小二乘法公式,求得和的值,進(jìn)而可求得關(guān)于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤(rùn)的估計(jì)值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計(jì)算出從年至年這年被評(píng)為級(jí)利潤(rùn)年的年數(shù),然后利用組合計(jì)數(shù)原理結(jié)合古典概型的概率可得出所求事件的概率.【題目詳解】(Ⅰ)根據(jù)表中數(shù)據(jù),計(jì)算可得,,,又,,,關(guān)于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤(rùn)的預(yù)測(cè)值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤(rùn)的估計(jì)值分別為、、、、、、、(單位:億元),其中實(shí)際利潤(rùn)大于相應(yīng)估計(jì)值的有年.故這年中被評(píng)為級(jí)利潤(rùn)年的有年,評(píng)為級(jí)利潤(rùn)年的有年.記“從年至年這年的年利潤(rùn)中隨機(jī)抽取年,恰有年為級(jí)利潤(rùn)年”的概率為,.【題目點(diǎn)撥】本題考查利用最小二乘法求回歸直線方程,同時(shí)也考查了古典概型概率的計(jì)算,涉及組合計(jì)數(shù)原理的應(yīng)用,考查計(jì)算能力,屬于中等題.18、(1);(2)見解析【解題分析】
(1)由條件可得,再根據(jù)離心率可求得,則可得橢圓方程;(2)當(dāng)與軸垂直時(shí),設(shè)直線的方程為:,與橢圓聯(lián)立求得的坐標(biāo),通過、斜率之積為列方程可得的值,進(jìn)而可得的面積;當(dāng)與軸不垂直時(shí),設(shè),,的方程為,與橢圓方程聯(lián)立,利用韋達(dá)定理和、斜率之積為可得,再利用弦長(zhǎng)公式求出,以及到的距離,通過三角形的面積公式求解.【題目詳解】(1)拋物線的焦點(diǎn)為,,,,,,橢圓方程為;(2)(?。┊?dāng)與軸垂直時(shí),設(shè)直線的方程為:代入得:,,,解得:,;(ⅱ)當(dāng)與軸不垂直時(shí),設(shè),,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【題目點(diǎn)撥】本題考查橢圓方程的求解,考查直線和橢圓的位置關(guān)系,考查韋達(dá)定理的應(yīng)用,考查了學(xué)生的計(jì)算能力,是中檔題.19、(1)(2);【解題分析】
(1),,可得為公比為2的等比數(shù)列,可得為公差為1的等差數(shù)列,再算出,的通項(xiàng)公式,解方程組即可;(2)利用分組求和法解決.【題目詳解】(1)依題意有又.可得數(shù)列為公比為2的等比數(shù)列,為公差為1的等差數(shù)列,由,得解得故數(shù)列,的通項(xiàng)公式分別為.(2),.【題目點(diǎn)撥】本題考查利用遞推公式求數(shù)列的通項(xiàng)公式以及分組求和法求數(shù)列的前n項(xiàng)和,考查學(xué)生的計(jì)算能力,是一道中檔題.20、(1)證明見解析;(2).【解題分析】
(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號(hào)判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對(duì)函數(shù)求導(dǎo),變形后討論當(dāng)時(shí)的函數(shù)單調(diào)情況:當(dāng)時(shí),可知滿足題意;將不等式化簡(jiǎn)后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點(diǎn)與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗(yàn)的符號(hào),即可確定整數(shù)的最大值;當(dāng)時(shí)不滿足題意,因?yàn)榍笳麛?shù)的最大值,所以時(shí)無需再討論.【題目詳解】(1)證明:當(dāng)時(shí)代入可得,令,,則,令解得,當(dāng)時(shí),所以在單調(diào)遞增,當(dāng)時(shí),所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時(shí),當(dāng)時(shí),,則在時(shí)單調(diào)遞減,所以,即當(dāng)時(shí)成立;所以此時(shí)需滿足的整數(shù)解即可,將不等式化簡(jiǎn)可得,令則令解得,當(dāng)時(shí),即在內(nèi)單調(diào)遞減,當(dāng)時(shí),即在內(nèi)單調(diào)遞增,所以當(dāng)時(shí)取得最小值,則,,,所以此時(shí)滿足的整數(shù)的最大值為;當(dāng)時(shí),在時(shí),此時(shí),與題意矛盾,所以不成立.因?yàn)榍笳麛?shù)的最大值,所以時(shí)無需再討論,綜上所述,當(dāng)時(shí),整數(shù)的最大值為.【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026秋招:五得利面粉集團(tuán)筆試題及答案
- 2026年外賣平臺(tái)包裝盒回收合同協(xié)議
- 2026年戶外運(yùn)動(dòng)加盟合同協(xié)議
- 2026年車載天線定制合同
- 數(shù)字廣告投放合同2025年效果評(píng)估
- 保密協(xié)議與競(jìng)業(yè)禁止協(xié)議
- 倉(cāng)庫(kù)搬運(yùn)安全培訓(xùn)
- 媽媽我要和你在一起課件教學(xué)
- 倉(cāng)庫(kù)作業(yè)管理流程培訓(xùn)
- 員工正裝標(biāo)準(zhǔn)培訓(xùn)課件教學(xué)
- 農(nóng)村水利技術(shù)術(shù)語(SL 56-2013)中文索引
- 中考語文文言文150個(gè)實(shí)詞及虛詞默寫表(含答案)
- 廣西小額貸管理辦法
- 海南省醫(yī)療衛(wèi)生機(jī)構(gòu)數(shù)量基本情況數(shù)據(jù)分析報(bào)告2025版
- 電影院消防安全制度范本
- 酒店工程維修合同協(xié)議書
- 2025年版?zhèn)€人與公司居間合同范例
- 電子商務(wù)平臺(tái)項(xiàng)目運(yùn)營(yíng)合作協(xié)議書范本
- 動(dòng)設(shè)備監(jiān)測(cè)課件 振動(dòng)狀態(tài)監(jiān)測(cè)技術(shù)基礎(chǔ)知識(shí)
- 專題15平面解析幾何(選擇填空題)(第一部分)(解析版) - 大數(shù)據(jù)之十年高考真題(2014-2025)與優(yōu) 質(zhì)模擬題(新高考卷與全國(guó)理科卷)
- 部門考核方案
評(píng)論
0/150
提交評(píng)論