版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省安慶市浮山高級中學2021年高三數(shù)學文月考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.用分期付款方式(貸款的月利率為1%)購買總價為25萬元的汽車,購買當天首付15萬元,此后可采用以下方式支付貸款:以后每月的這一天都支付相同數(shù)目的還款,20個月還完,則每月應還款約(
)元()A.
B.
C.
D.參考答案:B2.若△ABC的三個內(nèi)角滿足sinA:sinB:sinC=5:11:13,則△ABC(
)A.一定是銳角三角形B.一定是直角三角形C.一定是鈍角三角形D.可能是銳角三角形,也可能是鈍角三角形參考答案:C【考點】余弦定理的應用;正弦定理的應用.【專題】計算題;壓軸題.【分析】先根據(jù)正弦定理及題設,推斷a:b:c=5:11:13,再通過余弦定理求得cosC的值小于零,推斷C為鈍角.【解答】解:∵根據(jù)正弦定理,又sinA:sinB:sinC=5:11:13∴a:b:c=5:11:13,設a=5t,b=11t,c=13t(t≠0)∵c2=a2+b2﹣2abcosC∴cosC===﹣<0∴角C為鈍角.故選C【點評】本題主要考查余弦定理的應用.注意與正弦定理的巧妙結(jié)合.3.各大學在高考錄取時采取專業(yè)志愿優(yōu)先的錄取原則.一考生從某大學所給的7個專業(yè)中,選擇3個作為自己的第一、二、三專業(yè)志愿,其中甲、乙兩個專業(yè)不能同時兼報,則該考生不同的填報專業(yè)志愿的方法有()A.210種 B.180種 C.120種 D.95種參考答案:B【考點】排列、組合及簡單計數(shù)問題.【專題】排列組合.【分析】利用排列組合的方法即可得到結(jié)論.【解答】解:從7個專業(yè)選3個,有種選法,甲乙同時兼報的有種選法,則專業(yè)共有35﹣5=30種選法,則按照專業(yè)順序進行報考的方法為×30=180,故選:B【點評】本題主要考查排列組合的應用,利用對立法是解決本題的關(guān)鍵.4.若,則cos2α+2sin2α=()A. B.1 C. D.(0,0,1)參考答案:A【考點】三角函數(shù)的化簡求值.【分析】原式利用同角三角函數(shù)間的基本關(guān)系變形,將tanα的值代入計算即可求出值.【解答】解:由,得=﹣3,解得tanα=,所以cos2α+2sin2α====.故選A.【點評】此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.5.已知公差不為零的等差數(shù)列{an}的首項,,,成等比數(shù)列,則(
)A.238 B.-238 C.220 D.-220參考答案:D∵,,,成等比數(shù)列,∴,即,由此得到,或,∴,.故選:D
6.已知是首項為1的等比數(shù)列,且成等差數(shù)列,則數(shù)列的前5項的和為A.31
B.32
C.
D.參考答案:C略7.若直線經(jīng)過拋物線的焦點,則的最小值為(
)
A.
B.
C.
D.參考答案:C
圓心為(-1,2),代入直線方程得:
故:8.某幾何體的三視圖如圖所示,其中俯視圖為扇形,則該幾何體的體積為(
)
A.
B.
C.
D.參考答案:D由題意得,該幾何體為底面是一扇形的錐體,∴,故選D.9.在△ABC中,A,B,C成等差數(shù)列是(b+a﹣c)(b﹣a+c)=ac的()A.充分但不必要條件 B.必要但不充分條件C.充要條件 D.既不充分也不必要條件參考答案:C【考點】29:充要條件.【分析】由A,B,C成等差數(shù)列即可得到B=60°,而根據(jù)余弦定理即可得到a2+c2﹣b2=ac,這樣即可求得(b+a﹣c)(b﹣a+c)=ac,這就說明A,B,C成等差數(shù)列是(b+a﹣c)(b﹣a+c)=ac的充分條件;而由(b+a﹣c)(b﹣a+c)=ac,便可得到a2+c2﹣b2=ac,從而根據(jù)余弦定理求出B=60°,再根據(jù)三角形內(nèi)角和為180°即可說明B﹣A=C﹣B,即得到A,B,C成等差數(shù)列,這樣即可找出正確選項.【解答】解:(1)如圖,若A,B,C成等差數(shù)列:2B=A+C,所以3B=180°,B=60°;∴由余弦定理得,b2=a2+c2﹣ac;∴a2+c2﹣b2=ac;∴(b+a﹣c)(b﹣a+c)=b2﹣(a﹣c)2=b2﹣a2﹣c2+2ac=﹣ac+2ac=ac;即(b+a﹣c)(b﹣a+c)=ac;∴A,B,C成等差數(shù)列是(b+a﹣c)(b﹣a+c)=ac的充分條件;(2)若(b+a﹣c)(b﹣a+c)=ac,則:b2﹣(a﹣c)2=b2﹣a2﹣c2+2ac=ac;∴a2+c2﹣b2=ac;由余弦定理:a2+c2﹣b2=2ac?cosB;∴;∴B=60°;∴60°﹣A=180°﹣(A+60°)﹣60°;即B﹣A=C﹣B;∴A,B,C成等差數(shù)列;∴A,B,C成等差數(shù)列是(b+a﹣c)(b﹣a+c)=ac的必要條件;∴綜上得,A,B,C成等差數(shù)列是(b+a﹣c)(b﹣a+c)=ac的充要條件.故選:C.10.已知向量滿足與的夾角為,若對一切實數(shù),恒成立,則的取值范圍是(
)。A.
B.
C.
D.參考答案:【知識點】向量模的計算公式;數(shù)量積運算;恒成立問題的等價轉(zhuǎn)化.【答案解析】C解析:解:因為與的夾角為,所以,把原式平方整理可得:恒成立,所以,即,即,故選C.【思路點撥】由已知,利用模的計算公式兩邊平方轉(zhuǎn)化為關(guān)于的一元二次不等式,由于對一切實數(shù)原式恒成立,由解之即可.二、填空題:本大題共7小題,每小題4分,共28分11.設x,y滿足約束條件的取值范圍是
.參考答案:[,11]【考點】簡單線性規(guī)劃.【專題】數(shù)形結(jié)合.【分析】本題屬于線性規(guī)劃中的延伸題,對于可行域不要求線性目標函數(shù)的最值,而是求可行域內(nèi)的點與(﹣1,﹣1)構(gòu)成的直線的斜率問題,求出斜率的取值范圍,從而求出目標函數(shù)的取值范圍.【解答】解:由z==1+2×=1+2×,考慮到斜率以及由x,y滿足約束條件所確定的可行域.而z表示可行域內(nèi)的點與(﹣1,﹣1)連線的斜率的2倍加1.數(shù)形結(jié)合可得,在可行域內(nèi)取點A(0,4)時,z有最大值11,在可行域內(nèi)取點B(3,0)時,z有最小值,所以≤z≤11.故答案為:[,11].【點評】本題利用直線斜率的幾何意義,求可行域中的點與(﹣1,﹣1)的斜率,屬于線性規(guī)劃中的延伸題,解題的關(guān)鍵是對目標函數(shù)的幾何意義的理解.12.若集合,,則
.
參考答案:略13.
設函數(shù),若,則
.
參考答案:14.已知集合A={0,3,4},B={﹣1,0,2,3},則A∩B=
.參考答案:{0,3}【考點】交集及其運算.【分析】由A與B,求出兩集合的交集即可.【解答】解:集合A={0,3,4},B={﹣1,0,2,3},則A∩B={0,3};故答案為:{0,3}15.從4名男生和3名女生中選出3人,分別從事三項不同的工作,若這3人中至少有1名女生,則選派方案共有________種.參考答案:18616.設函數(shù)的定義域為D,如果存在正實數(shù),使對任意,都有,且恒成立,則稱函數(shù)為D上的“型增函數(shù)”.已知是定義在R上的奇函數(shù),且當時,,若為R上的“型增函數(shù)”,則實數(shù)的取值范圍是
.參考答案:略17.直線L的參數(shù)方程為(t為參數(shù)),則直線L的傾斜角為
.參考答案:考點:參數(shù)方程化成普通方程.專題:坐標系和參數(shù)方程.分析:首先把直線的參數(shù)方程轉(zhuǎn)化成直角坐標方程,進一步利用直線的傾斜角和斜率的關(guān)系求出結(jié)果.解答: 解:線L的參數(shù)方程為(t為參數(shù)),轉(zhuǎn)化成直角坐標方程為:y=,設直線的傾斜角為θ,則:tan由于直線傾斜角的范圍為:[0,π)所以:.故答案為:.點評:本題考查的知識要點:直線的參數(shù)方程與直角坐標方程的互化,直線的傾斜角和斜率的關(guān)系.三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.已知函數(shù).(Ⅰ)解不等式;(Ⅱ),,求a的取值范圍.參考答案:解法一:(Ⅰ)①當時,,得;
………2分②
時,,得;
………3分③
時,,得;
………4分綜上所述,不等式解集為.
………5分(Ⅱ)依題意,
其圖象如圖所示,
………………7分的圖象為過定點的直線,
………………8分由圖象可知,當直線的斜率時,,.
故的取值范圍為.
………………10分19.已知等比數(shù)列的前項和.設公差不為零的等差數(shù)列滿足:,且成等比.(Ⅰ)求及;(Ⅱ)設數(shù)列的前項和為.求使的最小正整數(shù)的值.參考答案:(Ⅰ)當n=1時,a1=S1=2-a.當n≥2時,an=Sn-Sn-1=2n-1.所以1=2-a,得a=1,所以an=2n-1.設數(shù)列{bn}的公差為d,由b1=3,(b4+5)2=(b2+5)(b8+5),得(8+3d)2=(8+d)(8+7d),故d=0(舍去)
或
d=8.所以a=1,bn=8n-5,n∈N*.(Ⅱ)由an=2n-1,知an=2(n-1).所以Tn=n(n-1).由bn=8n-5,Tn>bn,得n2-9n+5>0,因為n∈N*,所以n≥9.所以,所求的n的最小值為9.略20.已知直線l的參數(shù)方程為(t為參數(shù)),以原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為.(Ⅰ)求直線l的普通方程及曲線C的直角坐標方程;(Ⅱ)設直線l與曲線C交于A,B兩點,求.參考答案:(Ⅰ)直線:(為參數(shù)),消去得,即……2分曲線:,即,……3分又,……4分故曲線:……5分(Ⅱ)直線的參數(shù)方程為(為參數(shù))直線的參數(shù)方程為(為參數(shù)),……7分代入曲線:,消去得,……9分由參數(shù)的幾何意義知,……10分21.已知拋物線C:x2=2py(p>0)的焦點為F,過F的直線l交拋物線C于點A,B,當直線l的傾斜角是45°時,AB的中垂線交y軸于點Q(0,5).(1)求p的值;(2)以AB為直徑的圓交x軸于點M,N,記劣弧的長度為S,當直線l繞F旋轉(zhuǎn)時,求的最大值.參考答案:【考點】直線與圓錐曲線的綜合問題;直線與圓的位置關(guān)系.【分析】(1)求出l的方程為,設A(x1,y1),B(x2,y2),聯(lián)立直線與拋物線方程,利用韋達定理求出AB中點坐標,推出中垂線方程,結(jié)合AB的中垂線交y軸于點Q(0,5).求出p即可.(2)設l的方程為y=kx+1,代入x2=4y,求出AB的距離以及AB中點為D(2k,2k2+1),令∠MDN=2α,求出S的表達式,推出關(guān)系式,利用D到x軸的距離|DE|=2k2+1,求出,然后求解的最大值.【解答】解:(1)拋物線C:x2=2py(p>0)的焦點為F,,當l的傾斜角為45°時,l的方程為設A(x1,y1),B(x2,y2),由,得x2﹣2px﹣p2=0,x1+x2=2p,y1+y2=x1+x2+p=3p,得AB中點為…AB中垂線為,x=0代入得.∴p=2…(2)設l的方程為y=kx+1,代入x2=4y得x2﹣4kx﹣4=0,,AB中點為D(2k,2k2+1)令∠MDN=2α,,∴…D到x軸的距離|DE|=2k2+1,…
當k2=0時cosα取最小值,α的最大值為.故的最大值為.…22.如圖,在多面體中,四邊形為梯形,,均為等邊三角形,,.(1)過作截面與線段交于點,使得平面,試確定點的位置,并予以證明;(2)在(1)的條件下,求直線與平面所成角的正弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學習進步計劃落實承諾書7篇
- 它滋潤了我的心田作文600字12篇
- 協(xié)同團隊互助協(xié)議承諾函(9篇)
- 安全環(huán)保建設措施落實承諾書(8篇)
- 安徽工業(yè)大學《德語聽力》2024 - 2025 學年第一學期期末試卷
- 安徽財經(jīng)大學《環(huán)境監(jiān)測》2024 - 2025 學年第一學期期末試卷
- 安徽建筑大學《分子生物學》2024 - 2025 學年第一學期期末試卷
- 安徽理工大學《電路分析》2024 - 2025 學年第一學期期末試卷
- 2026四川成都市第三十二幼兒園招聘備考題庫附答案詳解(黃金題型)
- 勇敢的小英雄我的自述作文11篇
- 露天礦山安全生產(chǎn)崗位責任制與制度匯編
- 公司生產(chǎn)質(zhì)量獎罰制度
- 綜采隊檢修生產(chǎn)考核制度
- 第23課 醫(yī)療設施新功能 課件 2025-2026學年人教版初中信息科技八年級全一冊
- 2025年煙臺汽車工程職業(yè)學院單招綜合素質(zhì)考試題庫附答案解析
- GB 12801-2025生產(chǎn)過程安全基本要求
- 2026屆重慶市普通高中英語高三第一學期期末統(tǒng)考試題含解析
- 合同福利模板范文(3篇)
- 中醫(yī)綜合專升本課件
- DB32∕T 5124.3-2025 臨床護理技術(shù)規(guī)范 第3部分:成人危重癥患者有創(chuàng)動脈血壓監(jiān)測
- 《烹飪原料學》烹飪專業(yè)高職全套教學課件
評論
0/150
提交評論