版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
直線與平面垂直的判定loDCBAmE一、直線與平面垂直的概念
1、創(chuàng)設(shè)情境垂線垂面垂足2、直線與平面垂直的定義
如果直線l與平面內(nèi)的直線都垂直,則直線l與平面互相垂直.任意一條一、直線與平面垂直的概念
定義:所有的定義中的“任意一條直線”與“所有直線”同義3、深化理解直線和平面垂直是直線和平面相交的一種特殊形式.
若直線垂直于平面,則直線垂直于平面內(nèi)的任何一條直線,即若a⊥α,b?α,則a⊥b.簡(jiǎn)述之“線面垂直,則線線垂直”一、直線與平面垂直的概念
1、分析實(shí)例—猜想定理如何將一張賀卡直立于桌面?由此你能猜想出判斷一條直線與一個(gè)平面垂直的方法嗎?二、線面垂直判定定理的探究
1、分析實(shí)例—猜想定理
一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則這條直線與該平面垂直.二、線面垂直判定定理的探究
猜想:
實(shí)驗(yàn):如圖,將一塊三角形紙片ABC沿折痕AO折起,把翻折后的紙片豎起放置在桌面上,使BO、OC與桌面接觸,請(qǐng)大家觀察折痕AO與桌面的位置關(guān)系.ABCOABCO2、動(dòng)手操作—確認(rèn)定理二、線面垂直判定定理的探究
ABCO如何調(diào)整折痕AO的位置,才能使翻折后直線AD與桌面所在的平面垂直?通過實(shí)驗(yàn)?zāi)隳艿玫绞裁唇Y(jié)論?O二、線面垂直判定定理的探究
2、動(dòng)手操作—確認(rèn)定理BCαA文字語(yǔ)言:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則這條直線與該平面垂直.m,n
m∩n=Ol⊥m,l⊥n符號(hào)語(yǔ)言:ABCOαlnm}l⊥線線垂直
線面垂直二、線面垂直判定定理的探究
圖形語(yǔ)言:?jiǎn)栴}1:如果直線l與平面α內(nèi)的一條直線垂直,能保證l⊥α嗎?如果與平面α內(nèi)兩條直線垂直呢?無數(shù)條呢?3、質(zhì)疑反思—深化定理bα二、線面垂直判定定理的探究
提示:線不在多,相交則行問題2:如果直線l與平面α垂直,那么直線l與平面α內(nèi)這兩條直線一定相交嗎?3、質(zhì)疑反思—深化定理二、線面垂直判定定理的探究
labα3、深化理解①雖然平面內(nèi)直線有無數(shù)多條,但它卻可以由兩條相交直線完全確定②平面內(nèi)的兩條直線必須相交,但垂線與平面內(nèi)的兩條直線不一定相交③直線與平面判定定理體現(xiàn)了“轉(zhuǎn)化與化歸”的數(shù)學(xué)思想,即將線面垂直轉(zhuǎn)化為線線垂直二、線面垂直判定定理的探究
(1)如果一條直線垂直于一個(gè)平面內(nèi)的下列各種情況:①三角形的兩條邊;②梯形的兩條邊;③圓的兩條直徑;
④正六邊形的兩條邊.不能保證該直線與平面垂直的是
②④4、小試牛刀—概念鞏固三、線面垂直判定定理的應(yīng)用
(2)判斷題:正確的在括號(hào)內(nèi)打“√”號(hào),不正確的打“×”號(hào).若一條直線平行于一個(gè)平面,則垂直于這個(gè)平面的直線必定垂直于這條直線;()過一點(diǎn)與一個(gè)平面垂直的直線有無數(shù)條()過一點(diǎn)與一條直線垂直的平面有且只有一個(gè)()如果一條直線垂直于兩平行平面中的一個(gè),則該直線與另一個(gè)平面也垂直()√×√√4、小試牛刀—概念鞏固三、線面垂直判定定理的應(yīng)用
例1已知.求證:αabcd線面垂直→線線垂直→線面垂直如果兩條平行直線中的一條垂直于一個(gè)平面,那么另一條也垂直于同一個(gè)平面5、理論遷移—定理應(yīng)用三、線面垂直判定定理的應(yīng)用
課堂練習(xí)1a?b是直線,α是平面,下列判斷正確的是()A.a垂直α內(nèi)的兩條直線,則a⊥αB.a⊥b,b⊥α,則a∥αC.a∥α,b⊥α,則a⊥bD.a∥α,a∥β則α∥βC三、線面垂直判定定理的應(yīng)用
5、理論遷移—定理應(yīng)用例2.在正方體ABCD-A1B1C1D1中,求證:AC⊥平面BDD1DAB1C1BA1CD1三、線面垂直判定定理的應(yīng)用
5、理論遷移—定理應(yīng)用
證明:在正方體ABCD-A1B1C1D1中,DD1⊥平面ABCD,∵AC平面ABCD,∴DD1⊥AC,在正方形ABCD中,AC⊥BD,又∵DD1∩BD=D,且BD、DD1
平面BDD1∴AC⊥平面BDD1利用直線與平面垂直的判定定理判定直線與平面垂直的步驟:三、線面垂直判定定理的應(yīng)用
5、方法感悟—應(yīng)用總結(jié)①在這個(gè)平面內(nèi)找兩條直線,使它和這條直線垂直;②確定這個(gè)平面內(nèi)的兩條直線是相交的直線;③根據(jù)判定定理得出結(jié)論.三、線面垂直判定定理的應(yīng)用
5、理論遷移—定理應(yīng)用變式練習(xí).在本題中,連接AB1、B1C,求證:BD1⊥平面AB1C課堂練習(xí)2.在三棱錐P-ABC中,PA⊥平面ABC,∠ABC=90o,求BC⊥平面PAB.PABC三、線面垂直判定定理的應(yīng)用
5、理論遷移—定理應(yīng)用1.直線與平面垂直定義;2.線面垂直定理;3.兩條平行線中的一條與平面垂直,則另一條也與這個(gè)平面垂直.線面垂直→線線垂直線線垂直→線面垂直四、直線與平面垂直的判定課堂小結(jié)線面垂直→線線垂直P67練習(xí),習(xí)題2.3A組:1(做書上)P73習(xí)題2.3A組2,5四、直線與平面垂直的判定作業(yè)布置探索垂面、直線或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 海外項(xiàng)目部培訓(xùn)
- 鎢絞絲加熱子制造工安全宣教考核試卷含答案
- 燈具裝配工安全規(guī)程模擬考核試卷含答案
- 溶解乙炔生產(chǎn)工操作技能知識(shí)考核試卷含答案
- 魚油提煉工崗前技術(shù)知識(shí)考核試卷含答案
- 酒店員工職務(wù)行為規(guī)范制度
- 酒店客房服務(wù)操作規(guī)范制度
- 濟(jì)南達(dá)人鋼琴培訓(xùn)計(jì)劃
- 中醫(yī)護(hù)理基礎(chǔ)理論
- 家電清洗培訓(xùn)協(xié)議書模板
- 江蘇省鹽城市大豐區(qū)四校聯(lián)考2025-2026學(xué)年七年級(jí)上學(xué)期12月月考?xì)v史試卷(含答案)
- 小學(xué)生飛機(jī)科普教學(xué)
- 美術(shù)館施工組織設(shè)計(jì)方案
- 2022-2023學(xué)年北京市延慶區(qū)八年級(jí)(上)期末數(shù)學(xué)試卷(含解析)
- 檔案數(shù)字化加工上墻制度
- 2026年黑龍江農(nóng)業(yè)經(jīng)濟(jì)職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試參考題庫(kù)附答案詳解
- 干菌子委托加工協(xié)議書
- 中國(guó)肺癌合并肺結(jié)核臨床診療指南(2025版)
- 文化IP授權(quán)使用框架協(xié)議
- 2024年廣西壯族自治區(qū)公開遴選公務(wù)員筆試試題及答案解析(綜合類)
- 混凝土攪拌與運(yùn)輸信息化系統(tǒng)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論