版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,內(nèi)角所對的邊分別為.若,則角的值為()A. B. C. D.2.已知函數(shù)的導函數(shù)的圖象如圖所示,則()A.既有極小值,也有極大值 B.有極小值,但無極大值C.有極大值,但無極小值 D.既無極小值,也無極大值3.已知a,b,c為△ABC的三個內(nèi)角A,B,C的對邊,向量=,=(cosA,sinA),若與夾角為,則acosB+bcosA=csinC,則角B等于()A. B. C. D.4.在△ABC中,c=,A=75°,B=45°,則△ABC的外接圓面積為A. B.π C.2π D.4π5.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.6.公差不為零的等差數(shù)列{an}的前n項和為Sn,若a3是a2與a6的等比中項,S3=3,則S8=()A.36 B.42 C.48 D.607.若對任意,不等式恒成立,則a的取值范圍為()A. B. C. D.8.下列四個函數(shù)中,與函數(shù)完全相同的是()A. B.C. D.9.已知m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是()A.若α∥β,mα,nβ,則m∥n B.若α⊥β,mα,則m⊥βC.若α⊥β,mα,nβ,則m⊥n D.若α∥β,mα,則m∥β10.我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:“一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈多少?”現(xiàn)有類似問題:一座5層塔共掛了363盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的3倍,則塔的底層共有燈A.81盞 B.112盞 C.162盞 D.243盞二、填空題:本大題共6小題,每小題5分,共30分。11.已知一個三角形的三邊長分別為3,5,7,則該三角形的最大內(nèi)角為_________12.在直角坐標系中,已知任意角以坐標原點為頂點,以軸的非負半軸為始邊,若其終邊經(jīng)過點,且,定義:,稱“”為“的正余弦函數(shù)”,若,則_________.13.已知一圓錐的側(cè)面展開圖為半圓,且面積為S,則圓錐的底面積是_______14.若,,,則M與N的大小關系為___________.15.已知數(shù)列的通項公式為,的前項和為,則___________.16.設,,,,,為坐標原點,若、、三點共線,則的最小值是_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知平面向量(1)若,求;(2)若,求與夾角的余弦值.18.如圖,在四邊形中,已知,,,,設.(1)求(用表示);(2)求的最小值.(結(jié)果精確到米)19.已知{an}是等差數(shù)列,設數(shù)列{bn}的前n項和為Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=1.(1)求{an}和{bn}的通項公式;(2)令cn=anbn(n∈N*),求{cn}的前n項和Tn20.已知數(shù)列{bn}的前n項和,n∈N*.(1)求數(shù)列{bn}的通項公式;(2)記,求數(shù)列{cn}的前n項和Sn;(3)在(2)的條件下,記,若對任意正整數(shù)n,不等式恒成立,求整數(shù)m的最大值.21.渦陽縣某華為手機專賣店對市民進行華為手機認可度的調(diào)查,在已購買華為手機的名市民中,隨機抽取名,按年齡(單位:歲)進行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如圖:分組(歲)頻數(shù)合計(1)求頻數(shù)分布表中、的值,并補全頻率分布直方圖;(2)在抽取的這名市民中,從年齡在、內(nèi)的市民中用分層抽樣的方法抽取人參加華為手機宣傳活動,現(xiàn)從這人中隨機選取人各贈送一部華為手機,求這人中恰有人的年齡在內(nèi)的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)正弦定理將邊化角,可得,由可求得,根據(jù)的范圍求得結(jié)果.【詳解】由正弦定理得:本題正確選項:【點睛】本題考查正弦定理邊角互化的應用,涉及到兩角和差正弦公式、三角形內(nèi)角和、誘導公式的應用,屬于基礎題.2、B【解析】由導函數(shù)圖象可知,在上為負,在上非負,在上遞減,在遞增,在處有極小值,無極大值,故選B.3、B【解析】
根據(jù)向量夾角求得角的度數(shù),再利用正弦定理求得即得解.【詳解】由已知得:所以所以由正弦定理得:所以又因為所以因為所以所以故選B.【點睛】本題考查向量的數(shù)量積和正弦定理,屬于中檔題.4、B【解析】
根據(jù)正弦定理可得2R=,解得R=1,故△ABC的外接圓面積S=πR2=π.【詳解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.設△ABC的外接圓半徑為R,則由正弦定理可得2R=,解得R=1,故△ABC的外接圓面積S=πR2=π.故選B.【點睛】本題主要考查正弦定理及余弦定理的應用以及三角形面積公式,屬于難題.在解與三角形有關的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.5、C【解析】由題意,得,設過的拋物線的切線方程為,聯(lián)立,,令,解得,即,不妨設,由雙曲線的定義得,,則該雙曲線的離心率為.故選C.6、C【解析】
設出等差數(shù)列的公差d,根據(jù)a3是a2與a6的等比中項,S3=3,利用等比數(shù)列的性質(zhì)和等差數(shù)列的前n項和的公式化簡得到關于等差數(shù)列首項和公差方程組,求出方程組的解集即可得到首項和公差,然后再利用等差數(shù)列的前n項和的公式求出S8即可【詳解】設公差為d(d≠0),則有,化簡得:,因為d≠0,解得a1=-1,d=2,則S8=-82=1.故選:C.【點評】此題考查運用等差數(shù)列的前n項和的公式及等比數(shù)列的通項公式化簡求值,意在考查公式運用,是基礎題.7、D【解析】
對任意,不等式恒成立,即恒成立,代入計算得到答案.【詳解】對任意,不等式恒成立即恒成立故答案為D【點睛】本題考查了不等式恒成立問題,意在考查學生的計算能力和解決問題的能力.8、C【解析】
先判斷函數(shù)的定義域是否相同,再通過化簡判斷對應關系是否相同,從而判斷出與相同的函數(shù).【詳解】的定義域為,A.,因為,所以,定義域為或,與定義域不相同;B.,因為,所以,所以定義域為,與定義域不相同;C.,因為,所以定義域為,又因為,所以與相同;D.,因為,所以,定義域為,與定義域不相同.故選:C.【點睛】本題考查與三角函數(shù)有關的相同函數(shù)的判斷,難度一般.判斷相同函數(shù)時,首先判斷定義域是否相同,定義域相同時再去判斷對應關系是否相同(函數(shù)化簡),結(jié)合定義域與對應關系即可判斷出是否是相同函數(shù).9、D【解析】
在中,與平行或異面;在中,與相交、平行或;在中,與相交、平行或異面;在中,由線面平行的性質(zhì)定理得.【詳解】由,是兩條不同的直線,,是兩個不同的平面,知:在中,若,,,則與平行或異面,故錯誤;在中,若,,則與相交、平行或,故錯誤;在中,若,,,則與相交、平行或異面,故錯誤;在中,若,,則由線面平行的性質(zhì)定理得,故正確.故選.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,屬于中檔題.10、D【解析】
從塔頂?shù)剿酌繉訜舯K數(shù)可構(gòu)成一個公比為3的等比數(shù)列,其和為1.由等比數(shù)列的知識可得.【詳解】從塔頂?shù)剿酌繉訜舯K數(shù)依次記為a1,a2,a3故選D.【點睛】本題考查等比數(shù)列的應用,解題關鍵是根據(jù)實際意義構(gòu)造一個等比數(shù)列,把問題轉(zhuǎn)化為等比數(shù)列的問題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由題意可得三角形的最大內(nèi)角即邊7對的角,設為θ,由余弦定理可得cosθ的值,即可求得θ的值.【詳解】根據(jù)三角形中,大邊對大角,故邊長分別為3,5,7的三角形的最大內(nèi)角即邊7對的角,設為θ,則由余弦定理可得cosθ,∴θ=,故答案為:C.【點睛】本題主要考查余弦定理的應用,大邊對大角,已知三角函數(shù)值求角的大小,屬于基礎題.12、【解析】試題分析:根據(jù)正余弦函數(shù)的定義,令,則可以得出,即.可以得出,解得,.那么,,所以故本題正確答案為.考點:三角函數(shù)的概念.13、【解析】
由已知中圓錐的側(cè)面展開圖為半圓且面積為S,我們易確定圓錐的母線長l與底面半徑R之間的關系,進而求出底面面積即可得到結(jié)論.【詳解】如圖:設圓錐的母線長為l,底面半徑為R若圓錐的側(cè)面展開圖為半圓則2πR=πl(wèi),即l=2R,又∵圓錐的側(cè)面展開圖為半圓且面積為S,則圓錐的底面面積是.故答案為.【點睛】本題考查的知識點是圓錐的表面積,根據(jù)圓錐的側(cè)面展開圖為半圓,確定圓錐的母線長與底面的關系是解答本題的關鍵.14、【解析】
根據(jù)自變量的取值范圍,利用作差法即可比較大小.【詳解】,,,所以當時,所以,即,故答案為:.【點睛】本題考查了作差法比較整式的大小,屬于基礎題.15、【解析】
計算出,再由可得出的值.【詳解】當時,則,當時,則,當時,.,,因此,.故答案為:.【點睛】本題考查數(shù)列求和,解題的關鍵就是找出數(shù)列的規(guī)律,考查分析問題和解決問題的能力,屬于中等題.16、【解析】
根據(jù)三點共線求得的的關系式,利用基本不等式求得所求表達式的最小值.【詳解】依題意,由于三點共線,所以,化簡得,故,當且僅當,即時,取得最小值【點睛】本小題主要考查三點共線的向量表示,考查利用基本不等式求最小值,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由題可得,解出,,進而得出答案.(2)由題可得,,再由計算得出答案,【詳解】因為,所以,即解得所以(2)若,則所以,,,所以【點睛】本題主要考查的向量的模以及數(shù)量積,屬于簡單題.18、(1);(2)米【解析】
(1)在中,由正弦定理,求得,再在中,利用正弦定理,即可求得的表達式;(2)在中,由正弦定理,求得,進而可得到,利用三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,在中,,由正弦定理,可得,即,在中,,由正弦定理,可得,即,(2)在中,由正弦定理,可得,即所以因為,所以所以當時,取得最小值最小值約為米.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關系,熟練掌握定理、合理運用是解本題的關鍵.通常當涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當涉及三邊或兩邊及其夾角時,運用余弦定理求解.19、(2)an=n;bn=2n﹣2(2)Tn=(n﹣2)?2n+2【解析】
(2)運用數(shù)列的遞推式,以及等比數(shù)列的通項公式可得bn,{an}是公差為的等差數(shù)列,運用等差數(shù)列的通項公式可得首項和公差,可得所求通項公式;
(2)求得,由數(shù)列的錯位相減法求和,結(jié)合等比數(shù)列的求和公式,即可得到所求和.【詳解】(2)2bn=b2(2+Sn),bn≠0,n=2時,2b2=b2(2+S2)=b2(2+b2),解得b2=2,n≥2時,2bn﹣2=2+Sn﹣2,且2bn=2+Sn,相減可得2bn﹣2bn﹣2=Sn﹣Sn﹣2=bn,即bn=2bn﹣2,可得bn=2n﹣2,設{an}是公差為d的等差數(shù)列,a2b2=4,a7+b3=2即為a2+d=2,a2+6d=7,解得a2=d=2,可得an=n;(2)cn=anbn=n?2n﹣2,前n項和,,兩式相減可得﹣Tn=2+2+4+…+2n﹣2﹣n2nn2n,化簡可得Tn=(n﹣2)2n+2.【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的遞推式和數(shù)列的錯位相減法求和,化簡運算能力,屬于中檔題.20、(1)bn=3n﹣2,n∈N*.(2);(3)最大值為1.【解析】
(1)利用,求得數(shù)列的通項公式.(2)利用裂項求和法求得數(shù)列的前項和.(3)由(2)求得的表達式,記不等式左邊為,利用差比較法判斷出的單調(diào)性,進而求得的最小值,由此列不等式求得的取值范圍,進而求得整數(shù)的最大值.【詳解】(1)∵數(shù)列{bn}的前n項和,n∈N*.∴①當n=1時,b1=T1=1;②當n≥2時,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;設f(n);則f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中山大學附屬第三醫(yī)院2026年合同人員招聘備考題庫參考答案詳解
- 2025年浙江大學先進技術研究院多模態(tài)智能系統(tǒng)研究中心招聘備考題庫及參考答案詳解1套
- 2025年興業(yè)銀行濟南分行社會招聘備考題庫附答案詳解
- 2025年鹽城經(jīng)濟技術開發(fā)區(qū)部分單位公開招聘合同制工作人員7人備考題庫完整參考答案詳解
- 2026年職業(yè)健康安全管理合同
- 2025年中國水利水電科學研究院水力學所科研助理招聘備考題庫及1套完整答案詳解
- 2026年國際傳統(tǒng)醫(yī)藥國際城市智慧交通合同
- 2026年急救知識培訓服務合同
- 2025年日喀則市江孜縣人社局關于公開招聘兩名勞動保障監(jiān)察執(zhí)法輔助人員的備考題庫及答案詳解1套
- 建設一流化工園區(qū)經(jīng)驗交流材料經(jīng)驗交流
- 新版Haccp內(nèi)審檢查表
- 道路交通安全標志維修合同
- 2023年農(nóng)藥登記專員年度總結(jié)及下一年規(guī)劃
- 毛澤東生平簡介(1893-1949年)
- 課程設計傳動裝置輸入軸組合結(jié)構(gòu)設計說明書
- 《資本論》第一卷第六篇“工資”
- 中國近現(xiàn)代史綱要知到章節(jié)答案智慧樹2023年湖南城市學院
- (中職)Photoshop基礎實用教程全冊教案2022-2023學年
- 項目經(jīng)理答辯題庫題
- JJF 1851-2020α譜儀校準規(guī)范
- GB/T 7441-2008汽輪機及被驅(qū)動機械發(fā)出的空間噪聲的測量
評論
0/150
提交評論