第三章函數(shù)概念與性質(zhì)3 1及其表示課時2應(yīng)用_第1頁
第三章函數(shù)概念與性質(zhì)3 1及其表示課時2應(yīng)用_第2頁
第三章函數(shù)概念與性質(zhì)3 1及其表示課時2應(yīng)用_第3頁
第三章函數(shù)概念與性質(zhì)3 1及其表示課時2應(yīng)用_第4頁
第三章函數(shù)概念與性質(zhì)3 1及其表示課時2應(yīng)用_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

成套的課件成套的教案成套的試題成套的微專題盡在高中數(shù)學(xué)同步資源大全QQ群483122854聯(lián)系微信fjmath加入百度網(wǎng)盤群4000G一線老師必備資料一鍵轉(zhuǎn)存,自動更新,永不過期第三章 函數(shù)的概念與性質(zhì)3.1

函數(shù)的概念及其表示課時2 函數(shù)概念的應(yīng)用學(xué)習(xí)目標(biāo)理解兩個函數(shù)為同一函數(shù)的概念.(邏輯推理)會求一些簡單函數(shù)的定義域、值域.(數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算)自主預(yù)習(xí)·悟新知合作探究·提素養(yǎng)隨堂檢測·精評價1.定義域和值域分別相同的兩個函數(shù)是同一個函數(shù)嗎?[答案]

不一定,如果對應(yīng)關(guān)系不同,那么這兩個函數(shù)一定不是同一個函數(shù).?<>m

m><

m></2.函數(shù)??

??

=

???m<>/

的定義域是{??|??

4}

,對嗎?[答案]

不對,由<>m4

?

??

>

0/<>m

,解得<>m??

<

4/<>m

,故定義域?yàn)?lt;>m{??|??

<

4}/<>m

.3.求函數(shù)??=???

?4??+6

,??∈[1,5)

的值域.<>m

m></

m><

m></[答案]

函數(shù)??m><

??

m></

圖象的對稱軸是直線??m><

=

2m></

,故函數(shù)??m><

??

m></

的值域是[2,11)m></m><

.1.若??

??A.

2= ??

+1

,則??

3 =

(

@@4

).B.

4C.

2

2D.

10A[解析]

??

3

= 3+

1

=

2

.2.已知函數(shù)??

=

??

??

的定義域?yàn)閇?8,1]

,則函數(shù)??

?? =?

????

的定義域是(6@@).A.

?∞,

?2 ∪

(?2,3]???B.

[?8,

?2)

(?2,1]C.

[?

?

,

?2]?

?D.

[?

?

,

?2)

(?2,0]D?[解析]由題意得?8≤2??+1≤1

,解得??

≤??≤0

,由??+2≠0

,解得??≠?2

,?故所求的定義域是[??

,?2)∪(?2,0].???).=

??

,

??

??

=???A.

??

?? =

???

,

??

??

=

B.

??

??C.

??

?? =

??,

??

??=

???

???D.

??

??

=

????

,

??

??

=

??

+3

3.(多選題)下列每組函數(shù)中為同一個函數(shù)的是(8@@

AB[解析]

對于A,函數(shù)??

??

的定義域?yàn)槿w實(shí)數(shù),函數(shù)??

??

的定義域?yàn)槿w實(shí)數(shù),且??

??

=???

=???

,所以這兩個函數(shù)是相同函數(shù);對于B,因?yàn)??

??

= ???

=

??

,所以這兩個函數(shù)是相同函數(shù);對于C,函數(shù)??

??

的定義域?yàn)槿w實(shí)數(shù),函數(shù)??

??

的定義域?yàn)槿w非零實(shí)數(shù),所以這兩個函數(shù)不是相同函數(shù);對于D,函數(shù)??

??

的定義域?yàn)椴坏扔?的全體實(shí)數(shù),函數(shù)??

??

的定義域?yàn)槿w實(shí)數(shù),所以這兩個函數(shù)不是相同函數(shù).4.已知函數(shù)??

?? =

2??

?3

,

??

{??

??|1

??

5}

,則函數(shù)??

??

的值域?yàn)?/p>

><m{?1,1,3,5,7}/><m .[解析]

??

=

1

,

2

3

,

4

,

5

,且??

?? =

2??

?3

,∴??

??

的值域?yàn)閧?1,1,3,5,7}

.探究1

求函數(shù)值問題1:.有同學(xué)認(rèn)為“<>m??=??

??

/<>m

”表示的是“<>m??/<>m

等于<>m??/<>m

與<>m??/<>m

的乘積”,這種看法對嗎?[答案]

這種看法不對.“

<>m??

=

??

??

/<>m

”是“

<>m??/<>m

是<>m??/<>m

的函數(shù)”的數(shù)學(xué)表示,應(yīng)理解為<>m??/<>m

是自變量,它是關(guān)系所施加的對象;

<>m??/<>m

是對應(yīng)關(guān)系,它可以是一個或幾個解析式,可以是圖象、表格,也可以是文字描述;<>m??/<>m

是自變量的函數(shù),當(dāng)<>m??/<>m

允許取某一具體值時,相應(yīng)的<>m??/<>m

值為與該自變量值對應(yīng)的函數(shù)值.<>m??=??

??

/<>m

僅僅是函數(shù)符號,不表示“<>m??/<>m

等于<>m??/<>m

與<>m??/<>m

的乘積”.在研究函數(shù)時,除用符號<>m??

??

/<>m

外,還常用<>m??

??

/<>m

,<>m??

??

/<>m

,<>m??

??

/<>m

等來表示函數(shù).問題2:.<>m??

??

/<>m

與<>m??

??

/<>m

有何區(qū)別與聯(lián)系?[答案]

<>m??

??

/<>m

表示當(dāng)<>m??

=

??/<>m

時函數(shù)<>m??

??

/<>m

的值,它是一個常量,而<>m??

??

/<>m

是自變量<>m??/<>m

的函數(shù),一般情況下,它是一個變量,

??m><

??

m></

是??m><

??

m></

的一個特殊值.如一次函數(shù)??m><

?? =

3??

+

4/<>m

,當(dāng)??m><

=

8m></

時,

??m><

8 =

3×8+4

=

28/<>m

是一個常數(shù).新知生成函數(shù)求值的方法(1)已知<>m??

??

/<>m

的表達(dá)式時,只需用<>m??/<>m

替換表達(dá)式中的<>m??/<>m

,即可求得<>m??

??

/<>m

的值.(2)求??m><

??

??

/<>m

的值應(yīng)遵循由里往外的原則.新知運(yùn)用?<>m

m><

m></

m><

m></

m></<>m?例1

已知??

?? =

???m></

??

??

且??

?1

),

??

?? =

?? +

2

??

??

.(1)求<>m??

2

/<>m

,<>m??

2

/<>m

的值;(2)求??m><

??

2

/<>m

的值.[解析]

(1)因?yàn)??

??

=????,????

?=

?

.=???

+2

,所以??

2=

2?

+

2

=

6

.所以??

2

=又因?yàn)??

??(2)

??

??

2=

??

6

=????

?=

?

.方法總結(jié)求函數(shù)值的方法(1)已知<>m??

??

/<>m

的解析式時,只需用<>m??/<>m

替換解析式中的<>m??/<>m

即得<>m??

??

/<>m

的值.(2)已知??m><

??

m></

與??m><

??

m></

,求??m><

??

??

/<>m

的值應(yīng)遵循由里往外的原則.已知??

??????

+

1,

??

0,=

?

?,??

<

0,???則??

??

2

=.?<>m?

?/><m[解析]

??

2 =

?2?

+

1

=

?3

,∴

??

??

2 =

??

?3

=??????=

?

?

.探究2

相同函數(shù)觀察以下各組函數(shù):?

?

?(1)

m><??

= ??

m></

與<>m??

=

??

m<>/

;(2)

><m??

=??/<>m

與<>m??

=

??

m></

;(3)

><m??

=

1/<>m

與<>m??

=

??

/<>m

.問題1:.上述各組函數(shù)是同一函數(shù)嗎?[答案]

(1)是同一函數(shù);(2)(3)不是同一函數(shù).問題2:.如何判斷兩個函數(shù)是同一函數(shù)?[答案]

如果兩個函數(shù)的定義域和對應(yīng)關(guān)系相同,那么我們就稱這兩個函數(shù)是同一函數(shù).新知生成函數(shù)的三要素由函數(shù)的定義可知,一個函數(shù)的構(gòu)成要素為

定義域

、

對應(yīng)關(guān)系

值域

.相同函數(shù)值域是由

定義域

對應(yīng)關(guān)系

決定的,如果兩個函數(shù)的定義域和

對應(yīng)關(guān)系

相同,那么我們就稱這兩個函數(shù)是同一函數(shù).如果兩個函數(shù)僅對應(yīng)關(guān)系相同,但定義域不同,那么它們

不是

相同的函數(shù).新知運(yùn)用??

?A.

??

??

= ???

,

??

??

=

B.

??

?? =

1

,

??

??=

???C.

??

??

=

??

??

??=

???,

??

0,???,

??

<

0D.

??

?? =

??

+1

,

??

??=

???????例2

(多選題)下列各組函數(shù)中,表示不同函數(shù)的是(

26@@

ABD

).方法指導(dǎo)

根據(jù)相等函數(shù)的概念,結(jié)合函數(shù)的定義域與對應(yīng)法則,逐項(xiàng)判定,即可求解.[解析]函數(shù)??

??=???

的定義域?yàn)??

,函數(shù)??

??=??

?

的定義域?yàn)閇0,+∞),兩個函數(shù)的定義域不同,所以A表示不同的函數(shù);函數(shù)??

??=1

的定義域?yàn)??

,函數(shù)??

??=

???的定義域?yàn)?∞,0∪0,+∞,兩個函數(shù)的定義域不同,所以B表示不同的函數(shù);函數(shù)??

?? =∣

??

∣=

??,

??

0,

??,

??

0,????,

??

<

0

與??

?? =

????,

??

<

0

的定義域和對應(yīng)法則都相同,所以C表示相???同的函數(shù);函數(shù)??

?? =

??

+1

的定義域?yàn)??

,函數(shù)??

?? =

????

的定義域?yàn)閧??|??

1},兩個函數(shù)的定義域不同,所以D表示不同的函數(shù).綜上,表示不同函數(shù)的是ABD

.方法總結(jié)判斷兩個函數(shù)為同一函數(shù)的方法:判斷兩個函數(shù)是否為同一函數(shù),要先求定義域,若定義域不同,則不是同一函數(shù);若定義域相同,再化簡函數(shù)的解析式,看對應(yīng)關(guān)系是否相同.下列函數(shù)中,與函數(shù)??

=

??

??

0

是同一個函數(shù)的是(

28@@

).B.

??

=

??

C.

??

=

?

???

D.

??

=???

?DA.

??

=

???[解析]

??

= ???

的定義域?yàn)??

,與函數(shù)??

=

??

??

0

的定義域不相同,故不是同一個函數(shù);??

=

??

的定義域?yàn)?/p>

?∞,0

∪ 0,

+∞

,與函數(shù)??

=

??

??

0

的定義域不相同,故不是同一個?函數(shù);??

=

?

???

的定義域?yàn)??

,與函數(shù)??

=

??

??

0

的定義域不相同,故不是同一個函數(shù);??

= ??

?

的定義域?yàn)閇0,

+∞)

,與函數(shù)??

=

??

的定義域相同,且??

= ??

?

=

??

??

∈[0,+∞),函數(shù)對應(yīng)關(guān)系也相同,故是同一個函數(shù).故選D.探究3

求抽象函數(shù)的定義域小米預(yù)習(xí)這部分內(nèi)容時,發(fā)現(xiàn)這樣一個題目:已知函數(shù)<>m??

??

/<>m

的定義域?yàn)?lt;>m

?1,+∞/<>m

,求函數(shù)<>m??=?????

/<>m

的定義域.她不知如何入手求解.問題1:.函數(shù)<>m??=??

??

/<>m

的定義域與函數(shù)<>m??=?????

/<>m

的定義域相同嗎?[答案]

不相同.問題2:.你能幫助小米解決這個問題嗎?[答案]

能,

<>m??

=

??

???

/<>m

中的<>m???/<>m

替換了<>m??

=

??

??

/<>m

中的<>m??/<>m

,所以令<>m???

>

?1/<>m

,解得<>m??

<

1/<>m

,所以<>m??=?????

/<>m

的定義域?yàn)?lt;>m

?∞,1./<>m問題3:.已知<>m??

??

/<>m

的定義域,如何求<>m??

??

??[答案]

若<>m??

??

/<>m

的定義域?yàn)?lt;>m[??,

??]/<>m

,則<>m??

??

??/<>m

的定義域?/<>m

中<>m??≤??

??≤??/<>m

,從中解得<>m??/<>m

的取值集合即為<>m??

??

??

m></

的定義域.新知生成兩類抽象函數(shù)的定義域的求法(1)已知<>m??

??

/<>m

的定義域,求<>m??

??

??/<>m

的定義域:若<>m??

??

/<>m

的定義域?yàn)?lt;>m[??,??]/<>m

,則<>m??

??

??

m></

中??m><

??

??(2)已知??m><

??

??≤??/<>m

,從中解得<>m??/<>m

的取值集合即為<>m??

??

??/<>m

的定義域,求<>m??

??

/<>m

的定義域:若<>m??

??

??/<>m

的定義域./<>m

的定義域?yàn)?lt;>m[??,??]/<>m

,即<>m??≤??≤??/<>m

,求得<>m??

??

/<>m

的取值范圍,<>m??

??

/<>m

的值域即為<>m??

??

/<>m

的定義域.新知運(yùn)用例3

(1)

已知??

???

?

1

的定義域?yàn)閇0,3]

,則??

??

的定義域?yàn)?/p>

[?1,8]

.

<>m

/<>m

[解析]

根據(jù)??

???

?

1

的定義域?yàn)閇0,3]

,得??

[0,3]

,

???

?

1

[?1,8]

.故??

??

的定義域?yàn)閇?1,8]

.??(2)

若函數(shù)??

??

+1

的定義域?yàn)閇? ,

2]

,則函數(shù)??

??

?1

的定義域?yàn)???m<>[ ,

4]/><m[解析]

由題意知?

?

??

2

,則?

??

+

1

3

,即??

??

的定義域?yàn)閇?

,

3]

,

?

??

??

?

?

?1

3

,解得?

??

4

,故??

??

?

1

的定義域是[?

,

4]

.?

?方法總結(jié)函數(shù)<>m??=??

??

??求復(fù)合函數(shù)的定義域/<>m

的定義域由<>m??=??

??

/<>m

與<>m??=??

??

/<>m

的定義域共同決定:(1)若已知函數(shù)<>m??

??

/<>m

的定義域?yàn)閿?shù)集<>m??/<>m

,則函數(shù)<>m??

??

??

m></

的定義域由??m><

?? ∈

??m></

解出.(2)若已知函數(shù)m??><

??

??

/<>m

的定義域?yàn)閿?shù)集<m>??/<>m

,則函數(shù)<>m??

??

/<>m

的定義域?yàn)?lt;>m??

??

/<>m

在<>m??/<>m

中的值域.(1)已知函數(shù)<>m??=??

??

/<>m

的定義域?yàn)?lt;>m[?2,3]/<>m

,求函數(shù)<>m??=??

2???3

/<>m

的定義域.(2)已知函數(shù)<>m??=??

2???3

/<>m

的定義域是<>m[?2,3]/<>m

,求函數(shù)<>m??=??

??+2

/<>m

的定義域.[解析]

(1)因?yàn)楹瘮?shù)??

=

??

??

的定義域?yàn)閇?2,3]

,即??

[?2,3]

,又因?yàn)楹瘮?shù)??

=??

2??

?3

中2??

?

3

的范圍與函數(shù)??

=

??

??

中??

的范圍相同,所以?2

2??

?3

3

,解?

?得?

??

3

,所以函數(shù)??

=

??

2??

?

3

的定義域?yàn)閇?

,

3]

.(2)因?yàn)??

[?2,3]

,所以2??

?

3

[?7,3]

,即函數(shù)??

=

??

??

的定義域?yàn)閇?7,3]

,令?

7

??

+2

3

,解得?9

??

1

,所以函數(shù)??

=

??

??

+2

的定義域?yàn)閇?9,1]

.1.若函數(shù)??

??38@@的值為(

).CA.2[解析]

由??

??=3???1

,則??

??

1B.4=3???1

,所以??

1C.5=2

,所以??

??

1D.14=??

2

=5

.故選C.??

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論