2021年安徽省亳州市雙溝中學(xué)高二數(shù)學(xué)理月考試卷含解析_第1頁(yè)
2021年安徽省亳州市雙溝中學(xué)高二數(shù)學(xué)理月考試卷含解析_第2頁(yè)
2021年安徽省亳州市雙溝中學(xué)高二數(shù)學(xué)理月考試卷含解析_第3頁(yè)
2021年安徽省亳州市雙溝中學(xué)高二數(shù)學(xué)理月考試卷含解析_第4頁(yè)
2021年安徽省亳州市雙溝中學(xué)高二數(shù)學(xué)理月考試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021年安徽省亳州市雙溝中學(xué)高二數(shù)學(xué)理月考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.直線l:y=kx-1與雙曲線c:2x2-y2=1的左支交于不同的兩點(diǎn),那么k的取值范圍是(

)A.(,2)

B.(-,)

C.(-2,2)

D.(-2,-)參考答案:D2.函數(shù)的部分圖像大致為(

)A. B. C. D.參考答案:A【分析】由函數(shù)的表達(dá)式確定函數(shù)的性質(zhì),運(yùn)用導(dǎo)數(shù)求出極值,從而利用數(shù)形結(jié)合確定函數(shù)的圖象的形狀.【詳解】解:,函數(shù)是偶函數(shù),的圖象關(guān)于y軸對(duì)稱(chēng),故排除B,又,故排除D.在時(shí)取最小值,即時(shí)取最小值,解得x=,此時(shí)故排除C.故選:A.3.一個(gè)由半球和四棱錐組成的幾何體,其三視圖如圖所示.則該幾何體的體積為()A.+π B.+π C.+π D.1+π參考答案:C【考點(diǎn)】L!:由三視圖求面積、體積.【分析】由已知中的三視圖可得:該幾何體上部是一個(gè)半球,下部是一個(gè)四棱錐,進(jìn)而可得答案.【解答】解:由已知中的三視圖可得:該幾何體上部是一個(gè)半球,下部是一個(gè)四棱錐,半球的直徑為棱錐的底面對(duì)角線,由棱錐的底底面棱長(zhǎng)為1,可得2R=.故R=,故半球的體積為:=π,棱錐的底面面積為:1,高為1,故棱錐的體積V=,故組合體的體積為:+π,故選:C4.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使該三角形繞直線BC旋轉(zhuǎn)一周,則所形成的幾何體的體積是()A. B. C. D.參考答案:A【考點(diǎn)】棱柱、棱錐、棱臺(tái)的體積;旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái)).【分析】所形成的幾何體是以ACD為軸截面的圓錐中挖去了一個(gè)以ABD為軸截面的小圓錐后剩余的部分,故用大圓錐的體積減去小圓錐的體積,即為所求.【解答】解:如圖:△ABC中,繞直線BC旋轉(zhuǎn)一周,則所形成的幾何體是以ACD為軸截面的圓錐中挖去了一個(gè)以ABD為軸截面的小圓錐后剩余的部分.∵AB=2,BC=1.5,∠ABC=120°,∴AE=ABsin60°=,BE=ABcos60°=1,V1==,V2==π,∴V=V1﹣V2=,故選:A.【點(diǎn)評(píng)】本題考查圓錐的體積公式的應(yīng)用,判斷旋轉(zhuǎn)體的形狀是解題的關(guān)鍵.5.過(guò)雙曲線M:的左頂點(diǎn)A作斜率為1的直線,若與雙曲線M的兩條漸近線分別相關(guān)于點(diǎn)B、C,且|AB|=|BC|,則雙曲線M的離心率是(

)A. B. C. D.參考答案:B6.如圖所示,一個(gè)空間幾何體的主視圖和左視圖都是邊長(zhǎng)為1的正方形,俯視圖是一個(gè)直徑為1的圓,那么這個(gè)幾何體的全面積為()A. B.2π C.3π D.4π參考答案:A【考點(diǎn)】由三視圖求面積、體積.【分析】幾何體是一個(gè)圓柱,圓柱的底面是一個(gè)直徑為1的圓,圓柱的高是1,圓柱的表面積包括三部分,兩個(gè)圓的面積和一個(gè)矩形的面積,寫(xiě)出表示式,得到結(jié)果.【解答】解:由三視圖知幾何體是一個(gè)圓柱,圓柱的底面是一個(gè)直徑為1的圓,圓柱的高是1,∴圓柱的全面積是2×π+2=,故選A.7.3.把7名學(xué)生分配到甲、乙兩個(gè)宿舍中,每個(gè)宿舍至少安排2名學(xué)生,那么不同的分派方案共有多少種

)A.252

B.112

C.70

D.56參考答案:B略8.用反證法證明命題:“一個(gè)三角形中不能有兩個(gè)直角”的過(guò)程歸納為以下三個(gè)步驟:①,這與三角形內(nèi)角和為相矛盾,不成立;②所以一個(gè)三角形中不能有兩個(gè)直角;③假設(shè)三角形的三個(gè)內(nèi)角、、中有兩個(gè)直角,不妨設(shè);正確順序的序號(hào)為(

)A.③①② B.①②③ C.①③② D.②③①參考答案:A略9.已知數(shù)列{an},{bn}滿足a1=1,且an,an+1是方程x2﹣bnx+3n=0的兩根,則b8等于()A.54 B.108 C.162 D.324參考答案:C【考點(diǎn)】數(shù)列與函數(shù)的綜合.【分析】利用韋達(dá)定理推出關(guān)系式,然后逐步求解即可.【解答】解:數(shù)列{an},{bn}滿足a1=1,且an,an+1是方程x2﹣bnx+3n=0的兩根,可得:an+an+1=bn.a(chǎn)nan+1=3n;a1=1,則a2=3,a3=3,a4=9,a5=9,a6=27,a7=27,a8=81,a9=81,∴b8=a8+a9=162.故選:C.10.設(shè)等比數(shù)列的公比為,其前項(xiàng)的積為,并且滿足條件,,.給出下列結(jié)論:①;

②;③的值是中最大的;④使成立的最大自然數(shù)等于198.其中正確的結(jié)論是(

)A.①③

B.①④

C.

②③

D.②④參考答案:B二、填空題:本大題共7小題,每小題4分,共28分11.若在區(qū)間和上分別各取一個(gè)數(shù),記為和,則方程表示焦點(diǎn)在軸上的橢圓的概率為

.參考答案:略12.在中,若,則的面積是

.

參考答案:略13.已知橢圓,,為左頂點(diǎn),為短軸端點(diǎn),為右焦點(diǎn),且,則這個(gè)橢圓的離心率等于________

。參考答案:14.某算法的程序框圖如圖3所示,則輸出量y與輸入量x滿足的關(guān)系式是____________.參考答案:15.若變量x,y滿足約束條件且z=2x+y的最大值和最小值分別為m和n,則m-n等于 參考答案:616.在的展開(kāi)式中,設(shè)各項(xiàng)的系數(shù)和為a,各項(xiàng)的二項(xiàng)式系數(shù)和為b,則=

.參考答案:

1

17.已知單位正方形,點(diǎn)為中點(diǎn).過(guò)點(diǎn)與直線所成角為45°,且與平面所成角為60°的直線條數(shù)為_(kāi)_________.參考答案:2過(guò)點(diǎn)與直線所成角為,且與平面所成角為的直線條數(shù)與過(guò)與直線所成角為,且與平面所在的角為的直線條數(shù)相同,過(guò)與直線所成角為的直線為以為項(xiàng)點(diǎn),以為軸線的圓錐的母線,過(guò)且與平面所成角為的直線是以為頂點(diǎn),以為軸線,頂角為的圓錐的母線,由于,所以,故這兩個(gè)圓錐曲面的相交,有條交線,從而過(guò)點(diǎn)與直線所成角為,且與平面所成角為的直線條數(shù)為.三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.參考答案:

略19.已知雙曲線與橢圓=1有公共焦點(diǎn)F1,F(xiàn)2,它們的離心率之和為2.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)P是雙曲線與橢圓的一個(gè)交點(diǎn),求cos∠F1PF2.參考答案:【考點(diǎn)】雙曲線的簡(jiǎn)單性質(zhì).【分析】(1)由于橢圓焦點(diǎn)為F(0,±4),離心率為e=,可得雙曲線的離心率為2,結(jié)合雙曲線與橢圓=1有公共焦點(diǎn)F1,F(xiàn)2,求出a,b,c.最后寫(xiě)出雙曲線的標(biāo)準(zhǔn)方程;(2)求出|PF1|=7,|PF2|=3,|F1F2|=8,利用余弦定理,即可求cos∠F1PF2.【解答】解:(1)橢圓=1的焦點(diǎn)為(0,±4),離心率為e=.∵雙曲線與橢圓的離心率之和為2,∴雙曲線的離心率為2,∴=2∵雙曲線與橢圓=1有公共焦點(diǎn)F1,F(xiàn)2,∴c=4,∴a=2,b=,∴雙曲線的方程是;(2)由題意,|PF1|+|PF2|=10,|PF1|﹣|PF2|=4∴|PF1|=7,|PF2|=3,∵|F1F2|=8,∴cos∠F1PF2==﹣.20.(Ⅰ)若,求,;(Ⅱ)在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.參考答案:(Ⅰ),;(Ⅱ).【分析】(Ⅰ)利用復(fù)數(shù)的乘法法則可得出復(fù)數(shù),再利用共軛復(fù)數(shù)的定義和模長(zhǎng)公式可求出和;(Ⅱ)根據(jù)題意得出,解出這個(gè)不等式組可得出實(shí)數(shù)的取值范圍.【詳解】(Ⅰ),因此,,;(Ⅱ)由已知得:,解得,或.因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法、共軛復(fù)數(shù)、復(fù)數(shù)的模以及復(fù)數(shù)的幾何意義,解題的關(guān)鍵就是利用復(fù)數(shù)的四則運(yùn)算將復(fù)數(shù)表示為一般形式,考查計(jì)算能力,屬于基礎(chǔ)題.21.(本小題滿分12分)

已知橢圓=1(a>b>0)的離心率,過(guò)點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為.(1)求橢圓的方程.(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由.參考答案:(12分)解析:(1)直線AB方程為:bx-ay-ab=0.依題意解得∴橢圓方程為.…………4分(2)假若存在這樣的k值,由得.∴.①設(shè),、,,則②…………8分而.要使以CD為直徑的圓過(guò)點(diǎn)E(-1,0),當(dāng)且僅當(dāng)CE⊥DE時(shí),則,即.…………10分∴.③將②式代入③整理解得.經(jīng)驗(yàn)證,,使①成立.綜上可知,存在,使得以CD為直徑的圓過(guò)點(diǎn)E.………12分略22.(2015秋?成都校級(jí)月考)(文科)如圖,已知拋物線C:y=x2,點(diǎn)P(x0,y0)為拋物線上一點(diǎn),y0∈[3,5],圓F方程為x2+(y﹣1)2=1,過(guò)點(diǎn)P作圓F的兩條切線PA,PB分別交x軸于點(diǎn)M,N,切點(diǎn)分別為A,B.①求四邊形PAFB面積的最大值.②求線段MN長(zhǎng)度的最大值.參考答案:【考點(diǎn)】拋物線的簡(jiǎn)單性質(zhì).

【專(zhuān)題】綜合題;圓錐曲線的定義、性質(zhì)與方程.【分析】①四邊形PAFB面積S=2S△APF=2,求出|AP|的最大值,即可求四邊形PAFB面積的最大值.②求出M,N的坐標(biāo),表示出|MN|,即可求線段MN長(zhǎng)度的最大值.【解答】解:①設(shè)P(x0,x02),則x02∈[3,5],x02∈[12,20],由題意,∠FAP=90°,∠FBP=90°,△AFP中,|AP|==,令x02=t∈[12,20],則|AP|=,四邊形PAFB面積S=2S△APF=2=,最大值為,此時(shí)x02=20,即y0=5時(shí)取到;②設(shè)P(x0,x02),則圓的切線方程為y﹣x02=k(x﹣x0).由點(diǎn)到直線的距離公式可得=1∴(x02﹣1)k+

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論