版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
RevenueManagement
andDynamicPricing:
PartIE.AndrewBoydChiefScientistandSeniorVP,ScienceandResearchPROSRevenueManagementaboyd@OutlineConceptExampleComponentsReal-TimeTransactionProcessingExtracting,Transforming,andLoadingDataForecastingOptimizationDecisionSupportNon-TraditionalApplicationsFurtherReadingandSpecialInterestGroupsRevenueManagement
andDynamicPricingRevenueManagementinConceptWhatisRevenueManagement?BeganintheairlineindustrySeatsonanaircraftdividedintodifferentproductsbasedondifferentrestrictions$1000Yclassproduct:canbepurchasedatanytime,norestrictions,fullyrefundable$200Qclassproduct:Requires3weekadvancedpurchase,Saturdaynightstay,penaltiesforchangingticketafterpurchaseQuestion:Howmuchinventorytomakeavailableineachclassateachpointinthesalescycle?WhatisRevenueManagement?RevenueManagement:ThescienceofmaximizingprofitsthroughmarketdemandforecastingandthemathematicaloptimizationofpricingandinventoryRelatednames:YieldManagement(original)RevenueOptimizationDemandManagementDemandChainManagementRudimentsStrategic/Tactical:MarketingMarketsegmentationProductdefinitionPricingframeworkDistributionstrategyOperational:RevenueManagementForecastingdemandbywillingness-to-payDynamicchangestopriceandavailableinventoryIndustryPopularityWasbornofabusinessproblemandspeakstoabusinessproblemAddressestherevenuesideoftheequation,notthecostside2–10%revenueimprovementscommonIndustryAccolades“Nowwecanbealotsmarter.Revenuemanagementisallofourprofit,andmore.” BillBrunger,VicePresidentContinentalAirlines“PROSproductshavebeenakeyfactorinSouthwest'sprofitperformance.”KeithTaylor,VicePresidentSouthwestAirlinesAnalystAccolades“RevenuePricingOptimizationrepresentthenextwaveofsoftwareascompaniesseektoleveragetheirERPandCRMsolutions.”–ScottPhillips,MerrillLynch“Oneofthemostexcitinginevitabilitiesaheadis‘yieldmanagement.’”–BobAustrian,BancofAmericaSecurities“RevenueOptimizationwillbecomeacompetitivestrategyinnearlyallindustries.”–AMRResearchAcademicAccolades“Anareaofparticularinteresttooperationsresearchexpertstoday,accordingtoTrick,isrevenuemanagement.”InformationWeek,July12,2002.Dr.TrickisaProfessoratCMU
andPresidentofINFORMS.AcademicAccoladesAswemoveintoanewmillennium,dynamicpricinghasbecometherule.“Yieldmanagement,”saysMr.Varian,“iswhereit’sat.”“ToHalVarianthePriceisAlwaysRight,”strategy+business,Q12000.Dr.VarianisDeanoftheSchoolofInformationManagementandSystemsatUCBerkeley,andwasrecentlynamedoneofthe25mostinfluentialpeopleineBusinessbyBusinessWeek(May14,2001)ApplicationAreasTraditionalAirlineHotelExtendedStayHotelCarRentalRailTourOperatorsCargoCruiseNon-TraditionalEnergyBroadcastHealthcareManufacturingApparelRestaurantsGolfMore…DynamicPricingThedistinctionbetweenrevenuemanagementanddynamicpricingisnotaltogetherclearArefareclassesdifferentproducts,ordifferentpricesforthesameproduct?RevenuemanagementtendstofocusoninventoryavailabilityratherthanpriceRealityisthatrevenuemanagementanddynamicpricingareinextricablylinkedTraditionalRevenueManagementNon-traditionalrevenuemanagementanddynamicpricingapplicationareashavenotevolvedtothepointofstandardindustrypracticesTraditionalrevenuemanagementhas,andwefocusprimarilyontraditionalapplicationsinthispresentationRevenueManagement
andDynamicPricingManagingAirlineInventoryAirlineInventoryAmid-sizecarriermighthave1000dailydepartureswithanaverageof200seatsperflightlegEWRSEALAXIAHATLORDAirlineInventory200seatsperflightleg200x1000=200,000seatspernetworkday365networkdaysmaintainedininventory365x200,000=73millionseatsininventoryatanygiventimeThemechanicsofmanagingfinalinventoryrepresentsachallengesimplyduetovolumeAirlineInventoryRevenuemanagementprovidesanalyticalcapabilitiesthatdriverevenuemaximizingdecisionsonwhatinventoryshouldbesoldandatwhatpriceForecastingtodeterminedemandanditswillingness-to-payEstablishinganoptimalmixoffareproductsFareProductMixShoulda$1200SEA-IAH-ATLMclassitinerarybeavailable?A$2000Yclassitinerary?EWRSEALAXIAHATLORDFareProductMixShoulda$600IAH-ATL-EWRBclassitinerarybeavailable?An$800Mclassitinerary?EWRSEALAXIAHATLORDFareProductMixOptimizationputsinplaceinventorycontrolsthatallowthehighestpayingcollectionofcustomerstobechosenWhenitmakeseconomicsense,fareclasseswillbeclosedsoastosaveroomforhigherpayingcustomersthatareyettocomeRevenueManagement
andDynamicPricingComponentsTheReal-TimeTransactionProcessorRealTimeTransactionProcessor(RESSystem)RequestsforInventoryTheRevenueManagementSystemRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryAnalystsRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryAnalystDecisionSupportTheRevenueManagementProcessRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryAnalystDecisionSupportReal-TimeTransactionProcessorTheoptimizationparametersrequiredbythereal-timetransactionprocessorandsuppliedbytherevenuemanagementsystemconstitutetheinventory
control
mechanismReal-TimeTransactionProcessorDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QReal-TimeTransactionProcessorNestedleg/classavailabilityisthepredominantinventorycontrolmechanismintheairlineindustryDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QMClassBooking10959Real-TimeTransactionProcessorAfareclassmustbeopenonbothflightlegsifthefareclassistobeopenonthetwo-legitinerarySATDFWEWRYClassMClassBClassQClass501000YClassMClassBClassQClass11060200Extract,Transform,andLoadTransactionDataComplicationsVolumePerformancerequirementsNewproductsModifiedproductsPurchasemodificationsExtract,Transform,andLoadTransactionDataPHG01E08800005010710010710225300XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSG01OA3210LAXIAHK0108241500010824222701082422000108250227HKOA00PSG01OA9312IAHMYRK0108242330010825003701082503300108250437HKOA00PHG01E08800005010710010711125400XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV4281YPSG01OA4281MYRIAHY0109020600010902071401090210000109021114HKOA00PSG01OA5932IAHLAXK0109020800010902094001090212000109021640HKOA00PHG01E08800005010710010712142000XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV4281YPSG01OA4281MYRIAHL0109030600010903071401090310000109031114HKOA00PSG01OA5932IAHLAXK0109020800010902094001090212000109021640HKOA00PHG01E08800005010710010716104500XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513050108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV2297LPSG01OA5932IAHLAXK0109030800010903094001090312000109031640HKOA00PSG01OA2297MYRIAHQ0109031140010903125501090315400109031655HKOA00PHG01E08800005010710010717111500XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV2297QPSG01OA0981IAHLAXQ0109031420010903160801090318200109032308HKOA00PSG01OA2297MYRIAHQ0109031140010903125501090315400109031655HKOA0012345DemandModelsandForecastingHowshoulddemandbemodeledandforecast?Smallnumbers/levelofdetailUnobserveddemandandunconstrainingElementsofdemand:purchases,cancellations,noshows,goshowsDemandmodel…theprocessbywhichconsumersmakeproductdecisionsDemandcorrelationanddistributionalassumptionsSeasonalityDemandModelsandForecastingHolidaysandrecurringeventsSpecialeventsPromotionsandmajorpriceinitiativesCompetitiveactionsOptimizationOptimizationissuesConvertibleinventoryMovableinventory/capacitymodificationsOverbooking/oversaleofphysicalinventoryUpgrade/upwardsubstitutableinventoryProductmix/competitionforresources/networkeffectsDecisionSupportRevenueManagement
andDynamicPricingNon-TraditionalApplicationsTwoNon-TraditionalApplicationsBroadcastBusinessprocessessurroundingthepurchaseandfulfillmentofadvertisingtimerequiremodificationoftraditionalrevenuemanagementmodelsHealthcareBusinessprocessessurroundingpatientadmissionsrequirere-conceptualizationoftherevenuemanagementprocessNewAreasContractsandlongtermcommitmentsofinventoryCustomerlevelrevenuemanagementIntegratingsalesandinventorymanagementAlliancesandcooperativeagreementsRevenueManagement
andDynamicPricingFurtherReadingandSpecialInterestGroupsFurtherReadingForanentrypointintotraditionalrevenuemanagementJefferyMcGillandGarrettvanRyzin,“RevenueManagement:ResearchOverviewandProspects,”TransportationScience,33(2),1999E.AndrewBoydandIoanaBilegan,“RevenueManagementande-Commerce,”underreview,2002SpecialInterestGroupsINFORMSRevenueManagementSection/Pages/MAIN.htmAnnualmeetingheldinJuneatColumbiaUniversityAGIFORSReservationsandYieldManagementStudyGroup
FollowlinktoStudyGroupsAnnualmeetingheldintheSpringRevenueManagement
andDynamicPricing:
PartIIE.AndrewBoydChiefScientistandSeniorVP,ScienceandResearchPROSRevenueManagementaboyd@OutlineSingleFlightLegLeg/ClassControlBidPriceControlNetwork(O&D)ControlControlMechanismsModelsRevenueManagement
andDynamicPricingSingleFlightLegLeg/ClassControlDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QAtafixedpointintime,whataretheoptimalnestedinventoryavailabilitylimits?AMathematicalModelGiven:FareforeachfareclassDistributionoftotaldemand-to-comebyclassDemandassumedindependentDetermine:OptimalnestedbookinglimitsNote:Cancellationstypicallytreatedthroughseparateoptimizationmodeltodetermineoverbooking
levelsAMathematicalModelWheninventoryispartitionedratherthannested,thesolutionissimplePartitioninventorysothattheexpectedmarginalrevenuegeneratedofthelastseatassignedtoeachfareclassisequal(forsufficientlyprofitablefareclasses)AMathematicalModelNestedinventorymakestheproblemsignificantlymoredifficultduetothefactthatdemandforonefareclassimpactstheavailabilityforotherfareclassesTheproblemisill-posedwithoutmakingexplicitassumptionsaboutarrivalorderEarlymodelsassumedlow-before-highfareclassarrivalsAMathematicalModelThereexistsasubstantialbodyofliteratureonmethodsforgeneratingoptimalnestedbookingclasslimitsMathematicsbasicallyconsistsofworkingthroughthedetailsofconditioningonthenumberofarrivalsinthelowervaluefareclassesAnheuristicknownasEMSRbthatmimicstheoptimalmethodshascometodominateinpracticeAnAlternativeModelThelow-before-higharrivalassumptionwasaddressedbyassumingdemandarrivesbyfareclassaccordingtoindependentstochasticprocesses(typicallynon-homogeneousPoisson)Sincemanypractitionersconceptualizedemandas
totaldemand-to-come,modelsbasedonstochasticprocessesfrequentlycauseconfusionALegDPFormulationWithPoissonarrivals,anaturalsolutionmethodologyisdynamicprogrammingStagespace:timepriortodepartureStatespacewithineachstage:numberofbookingsStatetransitionscorrespondtoeventssuchasarrivalsandcancellations…TT-1T-2T-310nn+1n+2n+3…SeatsRemainingTimetoDepartureCancellationNoEvent/RejectedArrivalAcceptedArrival………………ALegDPFormulationV(t,n):Expectedreturninstaget,staten
whenmakingoptimaldecisionsV(t,n)=maxu[p0(0+V(t-1,n)) Noevent
(1-p0)
c(0+V(t-1,n-1))+ Cancel
(1-p0)
(fi<u)
i(0+V(t-1,n))
Arrival/Reject
(1-p0)
(fiu)
i(fi+V(t-1,n+1))] Arrival/Acceptu(t,n):Optimalpricepointformaking accept/rejectdecisionswheneventin
staget,statenisabookingrequestALegDPFormulationDPhastheinterestingcharacteristicthatitcalculatesV(t,n)forall(t,n)pairsProvidesvaluableinformationfordecisionmakingPresentscomputationalchallengesThisnaturallysuggestsanalternativecontrolmechanismtonestedfareclassavailabilityBidpricecontrol882591639492847884768473200……8823916194908820915891878817200………nn+1n+2n+3SeatsRemainingTT-1T-2T-310TimetoDeparture………………8480V(t,n)=
ExpectedRevenue882591639492…nn+1n+2n+3SeatsRemainingT…8480V(t,n)=
ExpectedRevenueV(t,n+1)–V(t,n)=
MarginalExpectedRevenue345338330…T…352nn+1n+2n+3SeatsRemainingBidPriceControl:Withn+1seatsremaining,acceptonlyarrivalswithfaresinexcessof345345338330…T…352BidPriceControlLikenestedbookinglimits,thereexistsasubstantialliteratureondynamicprogrammingmethodsforbidpricecontrolWhilebidpricecontrolissimpleandmathematicallyoptimal(foritsmodelingassumptions),ithasnotyetbeenbroadlyacceptedintheairlineindustrySubstantialchangestotheunderlyingbusinessprocessesBidPriceControlSolutionsfromdynamicprogrammingcanalsobeconvertedtonestedbookinglimits,butthistechniquehasnotbeenbroadlyadoptedinpracticeBidpricecontrolcanbeimplementedwithroughlythesamenumberofcontrolparameters(bidprices)asnestedfareclassavailabilityRevenueManagement
andDynamicPricingNetwork(O&D)ControlControlMechanismsNetworkControlNetworkcontrolrecognizesthatpassengersflowonmultipleflightlegsAnissueofglobalversuslocaloptimizationProblemiscomplicatedformanyreasonsForecastsofmanysmallnumbersDataLegacybusinesspracticesInventoryControlMechanismTheinventorycontrolmechanismcanhaveasubstantialimpactonRevenueMarketinganddistributionChangestoRESsystemChangestocontractsanddistributionchannelsExample:
LimitationsofLeg/ClassControlSATDFWEWRSupply:1seatontheSAT-DFWleg1seatontheDFW-EWRlegDemand:1$300SAT-DFWYpassenger1$1200SAT-DFW-EWRYpassenger$1200Y$300YExample:
LimitationsofLeg/ClassControlOptimalleg/classavailabilityistoleaveoneseatavailableinYclassoneachlegSATDFWEWRYClassMClassBClassQClass1000YClassMClassBClassQClass1000Example:
LimitationsofLeg/ClassControlSATDFWEWR$1200Y$300YWithleg/classcontrol,thereisnowaytoclose
SAT-DFWYwhileleavingSAT-DFW-EWRYopenSupply:1seatontheSAT-DFWleg1seatontheDFW-EWRlegDemand:1$300SAT-DFWYpassenger1$1200SAT-DFW-EWRYpassengerLimitationsofLeg/ClassControlThelimitationsofleg/classavailabilityasacontrolmechanismlargelyeliminaterevenueimprovementsfromanythingmoresophisticatedthanleg/classoptimizationForthisreason,carriersthatadoptO&DcontrolalsoadoptanewinventorycontrolmechanismRequirestremendouseffortandexpensetoworkaroundthelegacyinventoryenvironmentAlternativeControlMechanismsWhiletherearemanypotentialinventorycontrolmechanismsotherthanleg/classcontrol,twohavecometopredominateO&DrevenuemanagementapplicationsVirtualnestingBidpriceNotethattheconceptofitinerary/fareclass(ODIF)inventorylevelcontrolisimpracticalVirtualNestingAprimalcontrolmechanismsimilarinflavortoleg/classcontrolAsmallsetofvirtualinventorybucketsaredeterminedforeachlegNestedinventorylevelsareestablishedforeachbucketEachleginanODIFismappedtoaleginventorybucketandanODIFisavailableforsaleifinventoryisavailableineachlegbucketVirtualNestingSAT-DFW-EWRYmapstovirtualbucket3onlegSAT-DFWandvirtualbucket1onlegDFW-EWRTotalavailabilityof10forSAT-DFW-EWRYSATDFWEWRBucket1Bucket2Bucket3Bucket410060100Bucket1Bucket2Bucket3Bucket440000VirtualNestingSAT-DFWYmapstovirtualbucket4onlegSAT-DFWSAT-DFWYisclosedSATDFWEWRBucket1Bucket2Bucket3Bucket410060100Bucket1Bucket2Bucket3Bucket440000BidPriceControlAdualcontrolmechanismAbidpriceisestablishedforeachflightlegAnODIFisopenforsaleifthefareexceedsthesumofthebidpricesonthelegsthatareusedBidPriceControlSATDFWEWR$1200YBidPrice=$400BidPrice=$600SAT-DFW-EWRYisopenforsalebecause
$1200$400+$600
BidPriceControlSATDFWEWRBidPrice=$400BidPrice=$600$300YSAT-DFWYisclosedforsalebecause
$300<$400BidPriceControlSATDFWEWRIntermediatecontrolbetweenoptimizationpointsisachievedbyhavingadifferentbidpriceforeach
seatsoldininventory654321$664$647$632$619$610$600SeatBidPrice654321$434$425$417$410$405$400SeatBidPriceBidPriceControlSATDFWEWRAfteraseatissoldthebidpriceincreases,reflectingthereducedinventoryavailability654321$664$647$632$619$610$600SeatBidPrice654321$434$425$417$410$405$400SeatBidPriceVirtualNestingAdvantagesVerygoodrevenueperformanceComputationallytractableRelativelysmallnumberofcontrolparametersComprehensibletousersAcceptedindustrypracticeDisadvantagesNotdirectlyapplicabletomulti-dimensionalresourcedomainsProperoperationrequiresconstantremappingofODIFstovirtualbucketsBidPriceControlAdvantagesExcellentrevenueperformanceComputationallytractableComprehensibletousersBroaderusethanrevenuemanagementapplicationsPlacesamonetaryvalueonunitinventoryDisadvantagesGrowinguseracceptance,buthasnotreached
thesamelevelasprimalmethodsRevenueManagement
andDynamicPricingNetwork(O&D)ControlModelsAModelThedemandallocationmodel(alsoknownasthedemand-to-comemodel)hasbeenproposedforuseinrevenuemanagementapplications,butistypicallynotemployedForallofitslimitations,thedemandallocationmodelbringstolightmanyoftheimportantissuesinrevenuemanagementDemandAllocationModelMax
iIrixis.t.
iI(e)xice eE (e)
xidi iI (
i)
xi0
iI
I=setofODIFsE=setofflightlegsce=capacityofflightedi=demandforODIFiri=ODIFirevenueI(e)=ODIFsusingflightexi=demandallocatedtoODIFiLeg/ClassControlMax
iIrixis.t.
iI(e)xice eE (e)
xidi iI (
i)
xi0
iI
Thevariablesxicanberolleduptogenerateleg/classavailabilityVirtualNestingMax
iIrixis.t.
iI(e)xice eE (e)
xidi iI (
i)
xi0
iI
OnceODIFshavebeenassignedtolegbuckets,thevariablesxicanberolleduptogenerateleg/classavailabilityBidPriceControlMax
iIrixis.t.
iI(e)xice eE (e)
xidi iI (
i)
xi0
iI
ThedualvariableseassociatedwiththecapacityconstraintscanbeusedasbidpricesNetworkAlgorithms:
Leg/ClassControlNetworkalgorithmsforgeneratingnestedleg/classavailabilityarenottypicallyusedLimitationsofthecontrolmechanismandfarestructureeliminatemuchofthevalueNetworkAlgorithms:
VirtualNestingControlOptimizationconsistsofdeterminingtheODIFtoleg/bucketmapping,andthencalculatingnestedleg/bucketinventorylevelsBestmappingsprorateODIFfarestolegs,andthengroupsimilarproratedfaresintothesamebucketThebestprorationmethodsdependondemandforecastsandrealizedbookings,andchangedynamicallythroughoutthebookingcycleWithODIFsmappedtobuckets,nestedbucketinventorylevelsarecalculatedusingthenestedleg/bucketalgorithmofchoiceNetworkAlgorithms:
BidPriceControlBidpricesarenormallygenerateddirectlyorindirectlyfromthedualsolutionofanetworkoptimizationmodelResourceAllocationModelObservationsA200legnetworkmayhave10,000activeODIFs,leadingtoanetworkoptimizationproblemwith10,000columnsand10,200rowsWith20,000passengers,theaveragenumberofpassengersperODIFis2Typically,20%oftheODIFswillcarry80%ofthetraffic,withalargenumberofODIFscarryingontheorderof.01orfewerpassengersper
networkdayResourceAllocationModelMax
iIrixis.t.
iI(e)xice eE (e)
xidi iI (
i)
xi0
iI
ManysmallnumbersLevelofDetailProblemThelevelofdetailproblemremainsapracticalconsiderationwhensettingupanyrevenuemanag
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑施工現(xiàn)場(chǎng)物料管理流程
- 2020年化學(xué)模擬試題及命題特點(diǎn)分析
- 2023醫(yī)療行業(yè)面試真題集錦
- 小學(xué)語(yǔ)文寫作提升訓(xùn)練計(jì)劃
- 手機(jī)使用安全與健康教育課件
- 建筑施工環(huán)境保護(hù)措施計(jì)劃
- 國(guó)開電大管理英語(yǔ)4期末考試題庫(kù)
- 建筑施工安全文明管理操作指引
- ERP系統(tǒng)在中小企業(yè)供應(yīng)鏈管理中的應(yīng)用方案
- 中國(guó)傳統(tǒng)山水畫意境賞析與練習(xí)題
- 2026年遼寧生態(tài)工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)必考題
- 2026屆高考化學(xué)沖刺復(fù)習(xí)水溶液中離子平衡
- 2025年產(chǎn)業(yè)融合發(fā)展與區(qū)域經(jīng)濟(jì)一體化進(jìn)程研究可行性研究報(bào)告
- 2025年大學(xué)物聯(lián)網(wǎng)工程(傳感器技術(shù))試題及答案
- 工程部項(xiàng)目進(jìn)度監(jiān)控與風(fēng)險(xiǎn)應(yīng)對(duì)方案
- 河南省青桐鳴2026屆高三上學(xué)期第二次聯(lián)考語(yǔ)文試卷及參考答案
- 《國(guó)家賠償法》期末終結(jié)性考試(占總成績(jī)50%)-國(guó)開(ZJ)-參考資料
- 哈爾濱工業(yè)大學(xué)本科生畢業(yè)論文撰寫規(guī)范
- 水庫(kù)文明施工方案
- 地面防靜電地坪施工方案
- 廣東省深圳市2025學(xué)年六年級(jí)上冊(cè)數(shù)學(xué)期末備考真題(北師大版)
評(píng)論
0/150
提交評(píng)論