黃山市2024屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
黃山市2024屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
黃山市2024屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
黃山市2024屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
黃山市2024屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黃山市2024屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.已知圓錐的底面半徑是4,母線長是9,則圓錐側(cè)面展開圖的面積是()A. B. C. D.2.若反比例函數(shù)的圖象分布在二、四象限,則關(guān)于x的方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.只有一個實數(shù)根3.如圖所示,AB∥CD,∠A=50°,∠C=27°,則∠AEC的大小應(yīng)為()A.23° B.70° C.77° D.80°4.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.5.如圖,△ABC中,∠C=90°,AC=3,∠B=30°,點P是BC邊上的動點,則AP的長不可能是()A.3.5 B.4.2 C.5.8 D.76.下列說法中錯誤的是()A.成中心對稱的兩個圖形全等B.成中心對稱的兩個圖形中,對稱點的連線被對稱軸平分C.中心對稱圖形的對稱中心是對稱點連線的中心D.中心對稱圖形繞對稱中心旋轉(zhuǎn)180°后,都能與自身重合7.拋物線的頂點到軸的距離為()A. B. C.2 D.38.下列一元二次方程中,有一個實數(shù)根為1的一元二次方程是()A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=09.“拋一枚均勻硬幣,落地后正面朝上”這一事件是()A.必然事件 B.隨機事件 C.確定事件 D.不可能事件10.一元二次方程x2=9的根是()A.3 B.±3 C.9 D.±911.如圖,在平面直角坐標系中,菱形ABCD的頂點A(3,0),頂點B在y軸正半軸上,頂點D在x軸負半軸上,若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為()A.15 B.20 C.25 D.3012.如圖,拋物線與軸交于點,頂點坐標為,與軸的交點在、之間(包含端點).有下列結(jié)論:①當時,;②;③;④.其中正確的有()A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.如圖,在平行四邊形中,點、在雙曲線上,點的坐標是,點在坐標軸上,則點的坐標是___________.14.使代數(shù)式有意義的實數(shù)x的取值范圍為_____.15.已知拋物線y=2x2﹣5x+3與y軸的交點坐標是_____.16.如圖,在平面直角坐標系中,將正方形繞點逆時針旋轉(zhuǎn)后得到正方形,依此方式,繞點連續(xù)旋轉(zhuǎn)2019次得到正方形,如果點的坐標為(1,0),那么點的坐標為________.17.數(shù)學(xué)課上,老師在投影屏上出示了下列搶答題,需要回答橫線上符號代表的內(nèi)容◎代表__________________,@代表_________________。18.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,AC的中點,點F是AD的中點.若AB=8,則EF=_____.三、解答題(共78分)19.(8分)在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點A順時針旋轉(zhuǎn)一定的角度得到△AED,點B、C的對應(yīng)點分別是E、D.(1)如圖1,當點E恰好在AC上時,求∠CDE的度數(shù);(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.20.(8分)如圖,點P是上一動點,連接AP,作∠APC=45°,交弦AB于點C.AB=6cm.小元根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對線段AP,PC,AC的長度進行了測量.下面是小元的探究過程,請補充完整:(1)下表是點P是上的不同位置,畫圖、測量,得到線段AP,PC,AC長度的幾組值,如下表:AP/cm01.002.003.004.005.006.00PC/cm01.212.092.69m2.820AC/cm00.871.572.202.833.616.00①經(jīng)測量m的值是(保留一位小數(shù)).②在AP,PC,AC的長度這三個量中,確定的長度是自變量,的長度和的長度都是這個自變量的函數(shù);(2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數(shù)圖象;(3)結(jié)合函數(shù)圖象,解決問題:當△ACP為等腰三角形時,AP的長度約為cm(保留一位小數(shù)).21.(8分)如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.(1)求拋物線的解析式.(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標.(3)在平面直角坐標系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標.22.(10分)如圖,在某建筑物AC上,掛著一宣傳條幅BC,站在點F處,測得條幅頂端B的仰角為30°,往條幅方向前行20米到達點E處,測得條幅頂端B的仰角為60°,求宣傳條幅BC的長.(,結(jié)果精確到0.1米)23.(10分)如圖,在等邊△ABC中,AB=6,AD是高.(1)尺規(guī)作圖:作△ABC的外接圓⊙O(保留作圖痕跡,不寫作法)(2)在(1)所作的圖中,求線段AD,BD與弧所圍成的封閉圖形的面積.24.(10分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).(1)請畫出△ABC向左平移5個單位長度后得到的△ABC;(2)請畫出△ABC關(guān)于原點對稱的△ABC;(3)在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.25.(12分)如圖1,在平面直角坐標系中,拋物線y=x2+x+3與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C,過點C作x軸的平行線交拋物線于點P.連接AC.(1)求點P的坐標及直線AC的解析式;(2)如圖2,過點P作x軸的垂線,垂足為E,將線段OE繞點O逆時針旋轉(zhuǎn)得到OF,旋轉(zhuǎn)角為α(0°<α<90°),連接FA、FC.求AF+CF的最小值;(3)如圖3,點M為線段OA上一點,以O(shè)M為邊在第一象限內(nèi)作正方形OMNG,當正方形OMNG的頂點N恰好落在線段AC上時,將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形O′MNG,當點M與點A重合時停止平移.設(shè)平移的距離為t,正方形O′MNG的邊MN與AC交于點R,連接O′P、O′R、PR,是否存在t的值,使△O′PR為直角三角形?若存在,求出t的值;若不存在,請說明理由.26.如圖,直線y=﹣x+1與x軸,y軸分別交于A,B兩點,拋物線y=ax2+bx+c過點B,并且頂點D的坐標為(﹣2,﹣1).(1)求該拋物線的解析式;(2)若拋物線與直線AB的另一個交點為F,點C是線段BF的中點,過點C作BF的垂線交拋物線于點P,Q,求線段PQ的長度;(3)在(2)的條件下,點M是直線AB上一點,點N是線段PQ的中點,若PQ=2MN,直接寫出點M的坐標.

參考答案一、選擇題(每題4分,共48分)1、D【分析】先根據(jù)圓的周長公式計算出圓錐的底面周長,然后根據(jù)扇形的面積公式,即可求出圓錐側(cè)面展開圖的面積.【題目詳解】解:圓錐的底面周長為:2×4=,則圓錐側(cè)面展開圖的面積是.故選:D.【題目點撥】此題考查的是求圓錐的側(cè)面面積,掌握圓的周長公式和扇形的面積公式是解決此題的關(guān)鍵.2、A【分析】反比例函數(shù)的圖象分布在二、四象限,則k小于0,再根據(jù)根的判別式判斷根的情況.【題目詳解】∵反比例函數(shù)的圖象分布在二、四象限∴k<0則則方程有兩個不相等的實數(shù)根故答案為:A.【題目點撥】本題考查了一元二次方程方程根的情況,務(wù)必清楚時,方程有兩個不相等的實數(shù)根;時,方程有兩個相等的實數(shù)根;時,方程沒有實數(shù)根.3、C【分析】根據(jù)平行線的性質(zhì)可求解∠ABC的度數(shù),利用三角形的內(nèi)角和定理及平角的定義可求解.【題目詳解】解:∵AB∥CD,∠C=27°,∴∠ABC=∠C=27°,∵∠A=50°,∴∠AEB=180°﹣27°﹣50°=103°,∴∠AEC=180°﹣∠AEB=77°,故選:C.【題目點撥】本題主要考查平行線的性質(zhì),三角形的內(nèi)角和定理,掌握平行線的性質(zhì)是解題的關(guān)鍵.4、C【分析】作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【題目詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【題目點撥】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).5、D【題目詳解】解:根據(jù)垂線段最短,可知AP的長不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,∴AP的長不能大于1.∴故選D.6、B【解題分析】試題分析:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關(guān)于這個點成中心對稱中心對稱,中心對稱圖形的對稱中心是對稱點連線的交點,根據(jù)中心對稱圖形的定義和性質(zhì)可知A、C、D正確,B錯誤.故選B.考點:中心對稱.7、C【分析】根據(jù)二次函數(shù)的頂點式即可得到頂點縱坐標,即可判斷距x軸的距離.【題目詳解】由題意可知頂點縱坐標為:-2,即到x軸的距離為2.故選C.【題目點撥】本題考查頂點式的基本性質(zhì),需要注意題目考查的是距離即為坐標絕對值.8、D【分析】由題意,把x=1分別代入方程左邊,然后進行判斷,即可得到答案.【題目詳解】解:當x=1時,分別代入方程的左邊,則A、1+2=,故A錯誤;B、1-4+4=1,故B錯誤;C、1+4+10=15,故C錯誤;D、1+4-5=0,故D正確;故選:D.【題目點撥】本題考查了一元二次方程的解,解題的關(guān)鍵是分別把x=1代入方程進行解題.9、B【題目詳解】隨機事件.根據(jù)隨機事件的定義,隨機事件就是可能發(fā)生,也可能不發(fā)生的事件,即可判斷:拋1枚均勻硬幣,落地后可能正面朝上,也可能反面朝上,故拋1枚均勻硬幣,落地后正面朝上是隨機事件.故選B.10、B【解題分析】兩邊直接開平方得:,進而可得答案.【題目詳解】解:,兩邊直接開平方得:,則,.故選:B.【題目點撥】此題主要考查了直接開平方法解一元二次方程,解這類問題一般要移項,把所含未知數(shù)的項移到等號的左邊,把常數(shù)項移項等號的右邊,化成的形式,利用數(shù)的開方直接求解.11、B【分析】根據(jù)拋物線的解析式結(jié)合拋物線過點B、C,即可得出點C的橫坐標,由菱形的性質(zhì)可得出AD=AB=BC=1,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.【題目詳解】解:拋物線的對稱軸為,∵拋物線y=-x2-1x+c經(jīng)過點B、C,且點B在y軸上,BC∥x軸,

∴點C的橫坐標為-1.

∵四邊形ABCD為菱形,

∴AB=BC=AD=1,

∴點D的坐標為(-2,0),OA=2.

在Rt△ABC中,AB=1,OA=2,∴OB=,∴S菱形ABCD=AD?OB=1×4=3.

故選:B.【題目點撥】本題考查了二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)、菱形的性質(zhì)以及平行四邊形的面積,根據(jù)二次函數(shù)的性質(zhì)、菱形的性質(zhì)結(jié)合勾股定理求出AD=1、OB=4是解題的關(guān)鍵.12、C【分析】①由拋物線的頂點坐標的橫坐標可得出拋物線的對稱軸為x=1,結(jié)合拋物線的對稱性及點A的坐標,可得出點B的坐標,由點B的坐標即可斷定①正確;②由拋物線的開口向下可得出a<1,結(jié)合拋物線對稱軸為x=-=1,可得出b=-2a,將b=-2a代入2a+b中,結(jié)合a<1即可得出②不正確;③由拋物線與y軸的交點的范圍可得出c的取值范圍,將(-1,1)代入拋物線解析式中,再結(jié)合b=-2a即可得出a的取值范圍,從而斷定③正確;④結(jié)合拋物線的頂點坐標的縱坐標為,結(jié)合a的取值范圍以及c的取值范圍即可得出n的范圍,從而斷定④正確.綜上所述,即可得出結(jié)論.【題目詳解】解:①由拋物線的對稱性可知:

拋物線與x軸的另一交點橫坐標為1×2-(-1)=2,

即點B的坐標為(2,1),

∴當x=2時,y=1,①正確;

②∵拋物線開口向下,

∴a<1.

∵拋物線的頂點坐標為(1,n),

∴拋物線的對稱軸為x=-=1,

∴b=-2a,

2a+b=a<1,②不正確;

③∵拋物線與y軸的交點在(1,2)、(1,2)之間(包含端點),

∴2≤c≤2.

令x=-1,則有a-b+c=1,

又∵b=-2a,

∴2a=-c,即-2≤2a≤-2,

解得:-1≤a≤-,③正確;

④∵拋物線的頂點坐標為,∴n==c-,又∵b=-2a,2≤c≤2,-1≤a≤-,

∴n=c-a,≤n≤4,④正確.

綜上可知:正確的結(jié)論為①③④.

故選C.【題目點撥】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,解決該題型題目時,利用二次函數(shù)的系數(shù)表示出來拋物線的頂點坐標是關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】先根據(jù)點A的坐標求出雙曲線的解析式,然后根據(jù)點B,C之間的縱坐標之差和平行四邊形的性質(zhì)求出點D的坐標即可.【題目詳解】∵點在雙曲線上∴∴∴∵點B,點在坐標軸上∴B,C兩點的縱坐標之差為1∵四邊形ABCD是平行四邊形∴AD//BC,AD=BC∴A,D兩點的縱坐標之差為1∴D點的縱坐標為∴∴∴的坐標是故答案為【題目點撥】本題主要考查反比例函數(shù)及平行四邊形的性質(zhì),掌握待定系數(shù)法及平行四邊形的性質(zhì)是解題的關(guān)鍵.14、【分析】根據(jù)二次根式有意義的條件得出即可求解.【題目詳解】若代數(shù)式有意義,則,解得:,即實數(shù)x的取值范圍為.故填:【題目點撥】本題考查二次根式有意義的條件,熟練掌握二次根式有意義即根號內(nèi)的式子要大于等于零是關(guān)鍵.15、(0,3)【分析】要求拋物線與y軸的交點,即令x=0,解方程即可.【題目詳解】解:令x=0,則y=3,即拋物線y=2x2-5x+3與y軸的交點坐標是(0,3).故答案為(0,3).【題目點撥】本題考查了拋物線與y軸的交點.求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與y軸的交點坐標,令x=0,即可求得交點縱坐標.16、【分析】根據(jù)圖形可知:點B在以O(shè)為圓心,以O(shè)B為半徑的圓上運動,由旋轉(zhuǎn)可知:將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,相當于將線段OB繞點O逆時針旋轉(zhuǎn)45°,可得對應(yīng)點B的坐標,根據(jù)規(guī)律發(fā)現(xiàn)是8次一循環(huán),可得結(jié)論.【題目詳解】∵四邊形OABC是正方形,且OA=1,∴B(1,1),連接OB,由勾股定理得:OB=,由旋轉(zhuǎn)得:OB=OB1=OB2=OB3=…=,∵將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,相當于將線段OB繞點O逆時針旋轉(zhuǎn)45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(?1,1),B3(?,0),…,發(fā)現(xiàn)是8次一循環(huán),所以2019÷8=252…3,∴點B2019的坐標為(?,0)【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì),對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連接線段的夾角等于旋轉(zhuǎn)角,也考查了坐標與圖形的變化、規(guī)律型、點的坐標等知識,解題的關(guān)鍵是學(xué)會從特殊到一般的探究規(guī)律的方法.17、∠EFC內(nèi)錯角【分析】根據(jù)圖形,結(jié)合三角形外角的性質(zhì)、等量代換、平行線的判定即可將解答補充完整.【題目詳解】證明:延長BE交DC于點F,則(三角形的外角等于與它不相鄰的兩個內(nèi)角之和).又,得,故(內(nèi)錯角相等,兩直線平行).故答案為:∠EFC;內(nèi)錯角.【題目點撥】本題考查了三角形外角的性質(zhì)、平行線的判定,通過作輔助線,構(gòu)造內(nèi)錯角證明平行,及有效地進行等量代換是證明的關(guān)鍵.18、2【題目詳解】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=2,故答案為2.三、解答題(共78分)19、(1)15°;(2)證明見解析.【分析】(1)如圖1,利用旋轉(zhuǎn)的性質(zhì)得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根據(jù)等腰三角形的性質(zhì)求出∠ADC,從而計算出∠CDE的度數(shù);(2)如圖2,利用直角三角形斜邊上的中線性質(zhì)得到BF=AC,利用含30度的直角三角形三邊的關(guān)系得到BC=AC,則BF=BC,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,從而得到DE=BF,△ACD和△BAE為等邊三角形,接著由△AFD≌△CBA得到DF=BA,然后根據(jù)平行四邊形的判定方法得到結(jié)論.【題目詳解】解:(1)如圖1,∵△ABC繞點A順時針旋轉(zhuǎn)α得到△AED,點E恰好在AC上,∴∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,∵CA=DA,∴∠ACD=∠ADC=(180°?30°)=75°,∠ADE=90°-30°=60°,∴∠CDE=75°?60°=15°;(2)證明:如圖2,∵點F是邊AC中點,∴BF=AC,∵∠BAC=30°,∴BC=AC,∴BF=BC,∵△ABC繞點A順時針旋轉(zhuǎn)60°得到△AED,∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,∴DE=BF,△ACD和△BAE為等邊三角形,∴BE=AB,∵點F為△ACD的邊AC的中點,∴DF⊥AC,易證得△AFD≌△CBA,∴DF=BA,∴DF=BE,而BF=DE,∴四邊形BEDF是平行四邊形.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了平行四邊形的判定.20、(1)①3.0;②AP的長度是自變量,PC的長度和AC的長度都是這個自變量的函數(shù);(答案不唯一);(2)見解析;(3)2.3或4.2【分析】(1)①根據(jù)題意AC的值分析得出PC的值接近于半徑;②由題意AP的長度是自變量,分析函數(shù)值即可;(2)利用描點法畫出函數(shù)圖像即可;(3)利用數(shù)形結(jié)合的思想解決問題即可.【題目詳解】解:(1)①AC=2.83可知PC接近于半徑3.0;②AP的長度是自變量,PC的長度和AC的長度都是這個自變量的函數(shù);(答案不唯一)(2)如圖(答案不唯一,和(1)問相對應(yīng));(3)結(jié)合圖像根據(jù)AP=PC以及AC=PC進行代入分析可得AP為2.3或4.2【題目點撥】本題考查函數(shù)圖像的相關(guān)性質(zhì),利用描點法畫出函數(shù)圖像以及利用數(shù)形結(jié)合的思想進行分析求解.21、(1)y=﹣x2﹣2x+3;(2)點P(,);(3)符合條件的點D的坐標為D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【分析】(1)令y=0,求出點A的坐標,根據(jù)拋物線的對稱軸是x=﹣1,求出點C的坐標,再根據(jù)待定系數(shù)法求出拋物線的解析式即可;(2)設(shè)點P(m,﹣m2﹣2m+3),利用拋物線與直線相交,求出點B的坐標,過點P作PF∥y軸交直線AB于點F,利用S△ABP=S△PBF+S△PFA,用含m的式子表示出△ABP的面積,利用二次函數(shù)的最大值,即可求得點P的坐標;(3)求出點E的坐標,然后求出直線BC、直線BE、直線CE的解析式,再根據(jù)以點B、E、C、D為頂點的四邊形是平行四邊形,得到直線D1D2、直線D1D3、直線D2D3的解析式,即可求出交點坐標.【題目詳解】解:(1)令y=0,可得:x﹣1=0,解得:x=1,∴點A(1,0),∵拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,∴﹣1×2﹣1=﹣3,即點C(﹣3,0),∴,解得:∴拋物線的解析式為:y=﹣x2﹣2x+3;(2)∵點P在直線AB上方的拋物線上運動,∴設(shè)點P(m,﹣m2﹣2m+3),∵拋物線與直線y=x﹣1交于A、B兩點,∴,解得:,∴點B(﹣4,﹣5),如圖,過點P作PF∥y軸交直線AB于點F,則點F(m,m﹣1),∴PF=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,∴S△ABP=S△PBF+S△PFA=(﹣m2﹣3m+4)(m+4)+(﹣m2﹣3m+4)(1﹣m)=-(m+)2+,∴當m=時,P最大,∴點P(,).(3)當x=﹣1時,y=﹣1﹣1=﹣2,∴點E(﹣1,﹣2),如圖,直線BC的解析式為y=5x+15,直線BE的解析式為y=x﹣1,直線CE的解析式為y=﹣x﹣3,∵以點B、C、E、D為頂點的四邊形是平行四邊形,∴直線D1D3的解析式為y=5x+3,直線D1D2的解析式為y=x+3,直線D2D3的解析式為y=﹣x﹣9,聯(lián)立得D1(0,3),同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),綜上所述,符合條件的點D的坐標為D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【題目點撥】本題考查二次函數(shù)的綜合應(yīng)用,解決第(2)小題中三角形面積的問題時,找到一條平行或垂直于坐標軸的邊是關(guān)鍵;對于第(3)小題,要注意分類討論、數(shù)形結(jié)合的運用,不要漏解.22、宣傳條幅BC的長為17.3米.【解題分析】試題分析:先由∠F=30°,∠BEC=60°解得∠EBF=30°=∠F,從而可得BE=FE=20米,再在Rt△BEC中由sin∠BEC=即可解得BC的值.試題解析:∵∠BEC=∠F+∠EBF,∠F=30°,∠BEC=60°,∴∠EBF=60°-30°=30°=∠F,∴BE=FE=20(米).∵在Rt△BEC中,sin∠BEC=,∴BC=BE×≈10×1.732=17.32≈17.3(米).23、(1)見解析;(2)【分析】(1)作BH⊥AC交AD于O,以O(shè)為圓心,OB為半徑作⊙O即可.(1)線段AD,BD與所圍成的封閉圖形的面積=S扇形OAB+S△BOD.【題目詳解】解:(1)如圖,⊙O即為所求.(2)∵△ABC是等邊三角形,AD⊥BC,BH⊥AC,∴BD=CD=3,∠OBD=∠ABC=30°,∠AOB=2∠C=120°,∴OD=BD?tan30°=,OB=2OD=2,∴線段AD,BD與所圍成的封閉圖形的面積=S扇形OAB+S△BOD=×3×=2π+.【題目點撥】本題考查的知識點是作圓以及求不規(guī)則圖形的面積,熟記扇形的面積公式是解此題的關(guān)鍵.24、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標為:(2,0)【分析】(1)按題目的要求平移就可以了關(guān)于原點對稱的點的坐標變化是:橫、縱坐標都變?yōu)橄喾磾?shù),找到對應(yīng)點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉(zhuǎn)為了已知直線與直線一側(cè)的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關(guān)于該直線的對稱點,然后連接對稱點與另一點.【題目詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標為:(2,0)【題目點撥】1、圖形的平移;2、中心對稱;3、軸對稱的應(yīng)用25、(1)P(2,3),yAC=﹣x+3;(2);(3)存在,t的值為﹣3或,理由見解析【分析】(1)由拋物線y=x2+x+3可求出點C,P,A的坐標,再用待定系數(shù)法,可求出直線AC的解析式;(2)在OC上取點H(0,),連接HF,AH,求出AH的長度,證△HOF∽△FOC,推出HF=CF,由AF+CF=AF+HF≥AH,即可求解;(3)先求出正方形的邊長,通過△ARM∽△ACO將相關(guān)線段用含t的代數(shù)式表示出來,再分三種情況進行討論:當∠O'RP=90°時,當∠PO'R=90°時,當∠O'PR=90°時,分別構(gòu)造相似三角形,即可求出t的值,其中第三種情況不存在,舍去.【題目詳解】(1)在拋物線y=x2+x+3中,當x=0時,y=3,∴C(0,3),當y=3時,x1=0,x2=2,∴P(2,3),當y=0時,則x2+x+3=0,解得:x1=﹣4,x2=6,B(﹣4,0),A(6,0),設(shè)直線AC的解析式為y=kx+3,將A(6,0)代入,得,k=﹣,∴y=﹣x+3,∴點P坐標為P(2,3),直線AC的解析式為y=﹣x+3;(2)在OC上取點H(0,),連接HF,AH,則OH=,AH=,∵,,且∠HOF=∠FOC,∴△HOF∽△FOC,∴,∴HF=CF,∴AF+CF=AF+HF≥AH=,∴AF+CF的最小值為;(3)∵正方形OMNG的頂點N恰好落在線段AC上,∴GN=MN,∴設(shè)N(a,a),將點N代入直線AC解析式,得,a=﹣a+3,∴a=2,∴正方形OMNG的邊長是2,∵平移的距離為t,∴平移后OM的長為t+2,∴AM=6﹣(t+2)=4﹣t,∵RM∥OC,∴△ARM∽△ACO,∴,即,∴RM=2﹣t,如圖3﹣1,當∠O'RP=90°時,延長RN交CP的延長線于Q,∵∠PRQ+∠O'RM=90°,∠RO'M+∠O'RM=90°,∴∠PRQ=∠RO'M,又∵∠Q=∠O'MR=90°,∴△PQR∽△RMO',∴,∵PQ=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論