2024屆山西省太原市小店區(qū)志達中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2024屆山西省太原市小店區(qū)志達中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2024屆山西省太原市小店區(qū)志達中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2024屆山西省太原市小店區(qū)志達中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2024屆山西省太原市小店區(qū)志達中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山西省太原市小店區(qū)志達中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,點P在△ABC的邊AC上,要判斷△ABP∽△ACB,添加一個條件,不正確的是()A.∠ABP=∠C B.∠APB=∠ABCC. D.2.若,則一次函數(shù)與反比例函數(shù)在同一坐標系數(shù)中的大致圖象是()A. B.C. D.3.下列運算正確的是()A. B.C. D.4.如圖,點在以為直徑的上,若,,則的長為()A.8 B.6 C.5 D.5.如圖,已知點A(m,m+3),點B(n,n﹣3)是反比例函數(shù)y=(k>0)在第一象限的圖象上的兩點,連接AB.將直線AB向下平移3個單位得到直線l,在直線l上任取一點C,則△ABC的面積為()A. B.6 C. D.96.如圖所示,AB是⊙O的直徑,點C為⊙O外一點,CA,CD是⊙O的切線,A,D為切點,連接BD,AD.若∠ACD=30°,則∠DBA的大小是()A.15° B.30° C.60° D.75°7.書架上放著三本古典名著和兩本外國小說,小明從中隨機抽取兩本,兩本都是古典名著的概率是()A. B. C. D.8.如圖,AD,BC相交于點O,AB∥CD.若AB=1,CD=2,則△ABO與△DCO的面積之比為A. B. C. D.9.已知半徑為5的圓,其圓心到直線的距離是3,此時直線和圓的位置關(guān)系為().A.相離 B.相切 C.相交 D.無法確定10.一個不透明的袋子中裝有10個只有顏色不同的小球,其中2個紅球,3個黃球,5個綠球,從袋子中任意摸出一個球,則摸出的球是綠球的概率為()A. B. C. D.二、填空題(每小題3分,共24分)11.2018年我國新能源汽車保有量居世界前列,2016年和2018年我國新能源汽車保有量分別為51.7萬輛和261萬輛.設(shè)我國2016至2018年新能源汽車保有量年平均增長率為,根據(jù)題意,可列方程為______.12.在直徑為4cm的⊙O中,長度為的弦BC所對的圓周角的度數(shù)為____________.13.如圖,,與交于點,已知,,,那么線段的長為__________.14.用一個圓心角為150o,半徑為8的扇形作一個圓錐的側(cè)面,這個圓錐的底面圓的半徑為________.15.《九章算術(shù)》是東方數(shù)學(xué)思想之源,該書中記載:“今有勾八步,股一十五步,問勾中容圓徑幾何.”其意思為:“今有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形內(nèi)切圓的直徑是多少步.”該問題的答案是________步.16.某種商品每件進價為20元,調(diào)查表明:在某段時間內(nèi)若以每件x元(20≤x≤30,且x為整數(shù))出售,可賣出(30﹣x)件.若使利潤最大,每件的售價應(yīng)為______元.17.如圖,⊙O的半徑OC=10cm,直線l⊥OC,垂足為H,交⊙O于A,B兩點,AB=16cm,直線l平移____________cm時能與⊙O相切.18.如圖,拋物線y=﹣(x+1)(x﹣9)與坐標軸交于A、B、C三點,D為頂點,連結(jié)AC,BC.點P是該拋物線在第一象限內(nèi)上的一點.過點P作y軸的平行線交BC于點E,連結(jié)AP交BC于點F,則的最大值為_______.三、解答題(共66分)19.(10分)如圖,在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位.(1)△ABC繞著點C順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1;(2)求△ABC旋轉(zhuǎn)到△A1B1C時,的長.20.(6分)隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻?、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:(1)這次活動共調(diào)查了人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為;(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的“眾數(shù)”是“”;(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.21.(6分)閱讀下列材料,然后解答問題.經(jīng)過正四邊形(即正方形)各頂點的圓叫做這個正四邊形的外接圓,圓心是正四邊形的對稱中心,這個正四邊形叫做這個圓的內(nèi)接正四邊形.如圖,正方形ABCD內(nèi)接于⊙O,⊙O的面積為S1,正方形ABCD的面積為S1.以圓心O為頂點作∠MON,使∠MON=90°.將∠MON繞點O旋轉(zhuǎn),OM、ON分別與⊙O交于點E、F,分別與正方形ABCD的邊交于點G、H.設(shè)由OE、OF、及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S.(1)當OM經(jīng)過點A時(如圖①),則S、S1、S1之間的關(guān)系為:(用含S1、S1的代數(shù)式表示);(1)當OM⊥AB于G時(如圖②),則(1)中的結(jié)論仍然成立嗎?請說明理由;(3)當∠MON旋轉(zhuǎn)到任意位置時(如圖③),則(1)中的結(jié)論任然成立嗎:請說明理由.22.(8分)閱讀材料:材料2若一元二次方程ax2+bx+c=0(a≠0)的兩個根為x2,x2則x2+x2=﹣,x2x2=.材料2已知實數(shù)m,n滿足m2﹣m﹣2=0,n2﹣n﹣2=0,且m≠n,求的值.解:由題知m,n是方程x2﹣x﹣2=0的兩個不相等的實數(shù)根,根據(jù)材料2得m+n=2,mn=﹣2,所以=﹣2.根據(jù)上述材料解決以下問題:(2)材料理解:一元二次方程5x2+20x﹣2=0的兩個根為x2,x2,則x2+x2=,x2x2=.(2)類比探究:已知實數(shù)m,n滿足7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,求m2n+mn2的值:(2)思維拓展:已知實數(shù)s、t分別滿足29s2+99s+2=0,t2+99t+29=0,且st≠2.求的值.23.(8分)用適當?shù)姆椒ń庀铝幸辉畏匠蹋海?)x2+4x﹣2=0;(2)(x+2)2=3(x+2).24.(8分)如圖,矩形ABCD中,AB=6cm,AD=8cm,點P從點A出發(fā),以每秒一個單位的速度沿A→B→C的方向運動;同時點Q從點B出發(fā),以每秒2個單位的速度沿B→C→D的方向運動,當其中一點到達終點后兩點都停止運動.設(shè)兩點運動的時間為t秒.(1)當t=時,兩點停止運動;(2)設(shè)△BPQ的面積面積為S(平方單位)①求S與t之間的函數(shù)關(guān)系式;②求t為何值時,△BPQ面積最大,最大面積是多少?25.(10分)某商場以每件30元的價格購進一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數(shù)關(guān)系m=162﹣3x.(1)請寫出商場賣這種商品每天的銷售利潤y(元)與每件銷售價x(元)之間的函數(shù)關(guān)系式.(2)商場每天銷售這種商品的銷售利潤能否達到500元?如果能,求出此時的銷售價格;如果不能,說明理由.26.(10分)計算:—.

參考答案一、選擇題(每小題3分,共30分)1、D【解題分析】試題分析:A.當∠ABP=∠C時,又∵∠A=∠A,∴△ABP∽△ACB,故此選項錯誤;B.當∠APB=∠ABC時,又∵∠A=∠A,∴△ABP∽△ACB,故此選項錯誤;C.當時,又∵∠A=∠A,∴△ABP∽△ACB,故此選項錯誤;D.無法得到△ABP∽△ACB,故此選項正確.故選D.考點:相似三角形的判定.2、C【分析】根據(jù)ab>0,可得a、b同號,結(jié)合一次函數(shù)及反比例函數(shù)的特點進行判斷即可.【題目詳解】解:.A.根據(jù)一次函數(shù)可判斷a>0,b<0,即ab<0,故不符合題意,

B.根據(jù)反比例函數(shù)可判斷ab<0,故不符合題意,

C.根據(jù)一次函數(shù)可判斷a<0,b<0,即ab>0,根據(jù)反比例函數(shù)可判斷ab>0,故符合題意,

D.根據(jù)反比例函數(shù)可判斷ab<0,故不符合題意.

故選:C.【題目點撥】本題考查了反比例函數(shù)的圖象性質(zhì)和一次函數(shù)函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)是解決問題的關(guān)鍵.3、D【分析】根據(jù)題意利用合并同類項法則、完全平方公式、同底數(shù)冪的乘法運算法則及冪的乘方運算法則,分別化簡求出答案.【題目詳解】解:A.合并同類項,系數(shù)相加字母和指數(shù)不變,,此選項不正確;B.,是完全平方公式,(a-b)2=a2-2ab+b2,此選項錯誤;C.,同底數(shù)冪乘法底數(shù)不變指數(shù)相加,a2·a3=a5,此選項不正確;D.,冪的乘方底數(shù)不變指數(shù)相乘,(-a)4=(-1)4.a4=a4,此選項正確.故選:D【題目點撥】本題考查了有理式的運算法則,合并同類項的關(guān)鍵正確判斷同類項,然后按照合并同類項的法則進行合并;遇到冪的乘方時,需要注意若括號內(nèi)有“-”時,其結(jié)果的符號取決于指數(shù)的奇偶性.4、D【分析】根據(jù)直徑所對圓周角是直角,可知∠C=90°,再利用30°直角三角形的特殊性質(zhì)解出即可.【題目詳解】∵AB是直徑,∴∠C=90°,∵∠A=30°,∴,.故選D.【題目點撥】本題考查圓周角的性質(zhì)及特殊直角三角形,關(guān)鍵在于熟記相關(guān)基礎(chǔ)知識.5、A【分析】由點A(m,m+3),點B(n,n﹣3)在反比例函數(shù)y=(k>0)第一象限的圖象上,可得到m、n之間的關(guān)系,過點A、B分別作x軸、y軸的平行線,構(gòu)造直角三角形,可求出直角三角形的直角邊的長,由平移可得直角三角形的直角頂點在直線l上,進而將問題轉(zhuǎn)化為求△ADB的面積.【題目詳解】解:∵點A(m,m+3),點B(n,n﹣3)在反比例函數(shù)y=(k>0)第一象限的圖象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,過點A、B分別作x軸、y軸的平行線相交于點D,∴BD=xB﹣xA=n﹣m=3,AD=y(tǒng)A﹣yB=m+3﹣(n﹣3)=m﹣n+6=3,又∵直線l是由直線AB向下平移3個單位得到的,∴平移后點A與點D重合,因此,點D在直線l上,∴S△ACB=S△ADB=AD?BD=,故選:A.【題目點撥】本題主要考察反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵是熟練掌握計算法則.6、D【題目詳解】連接OD,∵CA,CD是⊙O的切線,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故選D.考點:切線的性質(zhì);圓周角定理.7、C【分析】畫樹狀圖(用A、B、C表示三本古典名著,a、b表示兩本外國小說)展示所有20種等可能的結(jié)果數(shù),找出從中隨機抽取2本都是古典名著的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】解:畫樹狀圖為:(用A、B、C表示三本古典名著,a、b表示兩本外國小說),共有20種等可能的結(jié)果數(shù),其中從中隨機抽取2本都是古典名著的結(jié)果數(shù)為6,所以從中隨機抽取2本都是古典名著的概率=.故選:C.【題目點撥】本題考查了樹狀圖法或列表法求概率,解題的關(guān)鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數(shù)m除以所有等可能發(fā)生的情況數(shù)n即可,即.8、B【解題分析】根據(jù)相似三角形的判定與性質(zhì)即可求出答案.【題目詳解】∵AB∥CD,∴△AOB∽△DOC,∵,∴,故選B.【題目點撥】本題考查相似三角形,解題的關(guān)鍵是熟練運用相似三角形的性質(zhì)與判定,本題屬于基礎(chǔ)題型.9、C【解題分析】試題分析:半徑r=5,圓心到直線的距離d=3,∵5>3,即r>d,∴直線和圓相交,故選C.【考點】直線與圓的位置關(guān)系.10、D【解題分析】隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).【題目詳解】解:綠球的概率:P==,故選:D.【題目點撥】本題考查概率相關(guān)概念,熟練運用概率公式計算是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)增長率的特點即可列出一元二次方程.【題目詳解】設(shè)我國2016至2018年新能源汽車保有量年平均增長率為,根據(jù)題意,可列方程為故答案為:.【題目點撥】此題主要考查一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意列出方程.12、60°或120°【分析】如下圖所示,分兩種情況考慮:D點在優(yōu)弧CDB上或E點在劣弧BC上時,根據(jù)三角函數(shù)可求出∠OCF的大小,進而求出∠BOC的大小,再由圓周角定理可求出∠D、∠E大小,進而得到弦BC所對的圓周角.【題目詳解】解:分兩種情況考慮:D在優(yōu)弧CDB上或E在劣弧BC上時,可得弦BC所對的圓周角為∠D或∠E,如下圖所示,作OF⊥BC,由垂徑定理可知,F(xiàn)為BC的中點,∴CF=BF=BC=,又直徑為4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圓內(nèi)接四邊形的對角互補,∴∠E=120°,則弦BC所對的圓周角為60°或120°.故答案為:60°或120°.【題目點撥】此題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì),銳角三角函數(shù)定義,以及特殊角的三角函數(shù)值,熟練掌握圓周角定理是解本題的關(guān)鍵.13、【分析】根據(jù)平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例得到OA:OD=AB:CD,然后利用比例性質(zhì)計算OA的長.【題目詳解】∵AB∥CD,∴OA:OD=AB:CD,即OA:2=4:3,∴OA=.故答案為.【題目點撥】本題考查了平行線分線段成比例:平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.14、【分析】根據(jù)扇形條件計算出扇形弧長,由此得到其所圍成的圓錐的底面圓周長,由圓的周長公式計算底面圓的半徑.【題目詳解】∵圓心角為150o,半徑為8∴扇形弧長:∴其圍成的圓錐的底面圓周長為:∴設(shè)底面圓半徑為則,得故答案為:.【題目點撥】本題考查了扇形弧長的計算,及扇形與圓錐之間的對應(yīng)關(guān)系,熟知以上內(nèi)容是解題的關(guān)鍵.15、1【分析】根據(jù)勾股定理求出直角三角形的斜邊,根據(jù)直角三角形的內(nèi)切圓的半徑的求法確定出內(nèi)切圓半徑,得到直徑.【題目詳解】解:根據(jù)勾股定理得:斜邊為=17,設(shè)內(nèi)切圓半徑為r,由面積法r=3(步),即直徑為1步,

故答案為:1.考點:三角形的內(nèi)切圓與內(nèi)心.16、3【解題分析】試題分析:設(shè)最大利潤為w元,則w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴當x=3時,二次函數(shù)有最大值3,故答案為3.考點:3.二次函數(shù)的應(yīng)用;3.銷售問題.17、4或1【分析】要使直線l與⊙O相切,就要求CH與DH,要求這兩條線段的長只需求OH弦心距,為此連結(jié)OA,由直線l⊥OC,由垂徑定理得AH=BH,在Rt△AOH中,求OH即可.【題目詳解】連結(jié)OA∵直線l⊥OC,垂足為H,OC為半徑,∴由垂徑定理得AH=BH=AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得OH=,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直線l向左平移4cm時能與⊙O相切或向右平移1cm與⊙O相切.故答案為:4或1.【題目點撥】本題考查平移直線與與⊙O相切問題,關(guān)鍵是求弦心距OH,會利用垂徑定理解決AH,會用勾股定理求OH,掌握引輔助線,增加已知條件,把問題轉(zhuǎn)化為三角形形中解決.18、【分析】根據(jù)拋物線的解析式求得A、B、C的坐標,進而求得AB、BC、AC的長,根據(jù)待定系數(shù)法求得直線BC的解析式,作PN⊥BC,垂足為N.先證明△PNE∽△BOC,由相似三角形的性質(zhì)可知PN=PE,然后再證明△PFN∽△AFC,由相似三角形的性質(zhì)可得到PF:AF與m的函數(shù)關(guān)系式,從而可求得的最大值.【題目詳解】∵拋物線y=﹣(x+1)(x﹣9)與坐標軸交于A、B、C三點,∴A(﹣1,0),B(9,0),令x=0,則y=1,∴C(0,1),∴BC,設(shè)直線BC的解析式為y=kx+b.∵將B、C的坐標代入得:,解得k=﹣,b=1,∴直線BC的解析式為y=﹣x+1.設(shè)點P的橫坐標為m,則縱坐標為﹣(m+1)(m﹣9),點E(m,﹣m+1),∴PE=﹣(m+1)(m﹣9)﹣(﹣m+1)=﹣m2+1m.作PN⊥BC,垂足為N.∵PE∥y軸,PN⊥BC,∴∠PNE=∠COB=90°,∠PEN=∠BCO.∴△PNE∽△BOC.∴===.∴PN=PE=(-m2+1m).∵AB2=(9+1)2=100,AC2=12+12=10,BC2=90,∴AC2+BC2=AB2.∴∠BCA=90°,又∵∠PFN=∠CFA,∴△PFN∽△AFC.∴===﹣m2+m=﹣(m﹣)2+.∵,∴當m時,的最大值為.故答案為:.【題目點撥】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了二次函數(shù)圖象上點的坐標特征、一次函數(shù)的解析式、等腰三角形的性質(zhì)、勾股定理的應(yīng)用以及相似三角形的證明與性質(zhì),求得與m的函數(shù)關(guān)系式是解題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2)【分析】(1)依據(jù)△ABC繞著點C順時針旋轉(zhuǎn)90°,即可畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1;(2)依據(jù)弧長計算公式,即可得到弧BB1的長.【題目詳解】解:(1)如圖所示,△A1B1C1即為所求;(2)弧BB1的長為:=.【題目點撥】本題主要考查作圖-旋轉(zhuǎn)變換,以及弧長公式,解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)變換的性質(zhì)及弧長公式.20、(1)200、81°;(2)補圖見解析;(3)【解題分析】分析:(1)用支付寶、現(xiàn)金及其他的人數(shù)和除以這三者的百分比之和可得總?cè)藬?shù),再用360°乘以“支付寶”人數(shù)所占比例即可得;(2)用總?cè)藬?shù)乘以對應(yīng)百分比可得微信、銀行卡的人數(shù),從而補全圖形,再根據(jù)眾數(shù)的定義求解可得;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩人恰好選擇同一種支付方式的情況,再利用概率公式即可求得答案.詳解:(1)本次活動調(diào)查的總?cè)藬?shù)為(45+50+15)÷(1﹣15%﹣30%)=200人,則表示“支付寶”支付的扇形圓心角的度數(shù)為360°×=81°,故答案為:200、81°;(2)微信人數(shù)為200×30%=60人,銀行卡人數(shù)為200×15%=30人,補全圖形如下:由條形圖知,支付方式的“眾數(shù)”是“微信”,故答案為:微信;(3)將微信記為A、支付寶記為B、銀行卡記為C,畫樹狀圖如下:畫樹狀圖得:∵共有9種等可能的結(jié)果,其中兩人恰好選擇同一種支付方式的有3種,∴兩人恰好選擇同一種支付方式的概率為=.點睛:此題考查了樹狀圖法與列表法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1);(1)(1)中的結(jié)論仍然成立,理由見解析;(1)(1)中的結(jié)論仍然成立,理由見解析.【解題分析】試題分析:(1)結(jié)合正方形的性質(zhì)及等腰直角三角形的性質(zhì),容易得出結(jié)論;(1)仍然成立,可證得四邊形OGHB為正方形,則可求出陰影部分的面積為扇形OEF的面積減去正方形OGBH的面積;(3)仍然成立,過O作OR⊥AB,OS⊥BC,垂足分別為R、S,則可證明△ORG≌△OSH,可得出四邊形ORBS的面積=四邊形OGBH的面積,再利用扇形OEF的面積減正方形ORBS的面積即可得出結(jié)論.試題解析:(1)當OM經(jīng)過點A時由正方形的性質(zhì)可知:∠MON=90°,∴S△OAB=S正方形ABCD=S1,S扇形OEF=S圓O=S1,∴S=S扇形OEF-S△OAB=S圓O-S正方形ABCD=S1-S1=(S1-S1),(1)結(jié)論仍然成立,理由如下:∵∠EOF=90°,∴S扇形OEF=S圓O=S1∵∠OGB=∠EOF=∠ABC=90°,∴四邊形OGBH為矩形,∵OM⊥AB,∴BG=AB=BC=BH,∴四邊形OGBH為正方形,∴S四邊形OGBH=BG1=(AB)1=S1,∴S=S扇形OEF-S四邊形OGBH=S1-S1=(S1-S1);(3)(1)中的結(jié)論仍然成立,理由如下:∵∠EOF=90°,∴S扇形OEF=S圓O=,過O作OR⊥AB,OS⊥BC,垂足分別為R、S,由(1)可知四邊形ORBS為正方形,∴OR=OS,∵∠ROS=90°,∠MON=90°,∴∠ROG=∠SOH=90°-∠GOS,在△ROG和△SOH中,,∴△ROG≌△SOH(ASA),∴S△ORG=S△OSH,∴S四邊形OGBH=S正方形ORBS,由(1)可知S正方形ORBS=S1,∴S四邊形OGBH=S1,∴S=S扇形OEF-S四邊形OGBH=(S1-S1).考點:圓的綜合題.22、(2)-2,-;(2)﹣;(2)﹣.【分析】(2)直接利用根與系數(shù)的關(guān)系求解;(2)把m、n可看作方程7x2﹣7x﹣2=0,利用根與系數(shù)的關(guān)系得到m+n=2,mn=﹣,再利用因式分解的方法得到m2n+mn2=mn(m+n),然后利用整體的方法計算;(2)先把t2+99t+29=0變形為29?()2+99?+2=0,則把實數(shù)s和可看作方程29x2+99x+2=0的兩根,利用根與系數(shù)的關(guān)系得到s+=﹣,s?=,然后變形為s+4?+,再利用整體代入的方法計算.【題目詳解】解:(2)x2+x2=﹣=﹣2,x2x2=﹣;故答案為﹣2;﹣;(2)∵7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,∴m、n可看作方程7x2﹣7x﹣2=0,∴m+n=2,mn=﹣,∴m2n+mn2=mn(m+n)=﹣×2=﹣;(2)把t2+99t+29=0變形為29?()2+99?+2=0,實數(shù)s和可看作方程29x2+99x+2=0的兩根,∴s+=﹣,s?=,∴=s+4?+=﹣+4×=﹣.【題目點撥】本題考查了根與系數(shù)的關(guān)系:若x2,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x2+x2=﹣,x2x2=.也考查了解一元二次方程.23、(1)x=﹣2±;(2)x=﹣2或x=1【分析】(1)根據(jù)配方法即可求出答案.(2)根據(jù)因式分解法即可求出答案.【題目詳解】解:(1)∵x2+4x﹣2=0,∴x2+4x+4=6,∴(x+2)2=6,∴x=﹣2±.(2)∵(x+2)2=3(x+2),∴(x+2)(x+2﹣3)=0,∴x=﹣2或x=1.【題目點撥】本題考查一元二次方程,解題的關(guān)鍵是熟練運用一元二次方程的解法,本題屬于基礎(chǔ)題型.24、(1)1;(2)①當0<t<4時,S=﹣t2+6t,當4≤t<6時,S=﹣4t+2,當6<t≤1時,S=t2﹣10t+2,②t=3時,△PBQ的面積最大,最大值為3【分析】(1)求出點Q的運動時間即可判斷.(2)①的三個時間段分別求出△PBQ的面積即可.②利用①中結(jié)論,求出各個時間段的面積的最大值即可判斷.【題目詳解】解:(1)∵四邊形ABCD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論