初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納_第1頁(yè)
初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納_第2頁(yè)
初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納_第3頁(yè)
初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納_第4頁(yè)
初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(一)運(yùn)用公式法:我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項(xiàng)式分解因式。于是有:a2—b2=(a+b)(a—b)a2+2ab+b2=(a+b)2a2—2ab+b2=(a—b)2如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。(二)平方差公式1.平方差公式(1)式子:a2—b2=(a+b)(a—b)(2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。(三)因式分解.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。(四)完全平方公式⑴把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2—2ab+b2反過(guò)來(lái),就可以得到:a2+2ab+b2=(a+b)2a2—2ab+b2=(a—b)2這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。把a(bǔ)2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。上面兩個(gè)公式叫完全平方公式。(2)完全平方式的形式和特點(diǎn)①項(xiàng)數(shù):三項(xiàng)②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。③有一項(xiàng)是這兩個(gè)數(shù)的積的兩倍。(3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。⑷完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。(5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。(五)分組分解法我們看多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式。原式二(am+an)+(bm+bn)=a(m+n)+b(m+n)做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x。但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以原式二(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)義(a+b)。這種利用分組來(lái)分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來(lái)分解因式。(六)提公因式法1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃?,或改變符?hào),直到可確定多項(xiàng)式的公因式。.運(yùn)用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于一次項(xiàng)的系數(shù)。2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:①列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;②嘗試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù)。.將原多項(xiàng)式分解成(x+q)(x+p)的形式。(七)分式的乘除法.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡(jiǎn)分式。.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分。.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按—1的偶次方為正、奇次方為負(fù)來(lái)處理。當(dāng)然,簡(jiǎn)單的分式之分子分母可直接乘方。.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減。(八)分?jǐn)?shù)的加減法.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái)。.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。3.一般地,通分結(jié)果中,分母不展開(kāi)而寫(xiě)成連乘積的形式,分子則乘出來(lái)寫(xiě)成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。4.通分的依據(jù):分式的基本性質(zhì)。5.通分的關(guān)鍵:確定幾個(gè)分式的公分母。通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。6.類比分?jǐn)?shù)的通分得到分式的通分:把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质?,然后再加減。9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào)。10.對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運(yùn)算簡(jiǎn)化。.作為最后結(jié)果,如果是分式則應(yīng)該是最簡(jiǎn)分式。(九)含有字母系數(shù)的一元一次方程1.含有字母系數(shù)的一元一次方程引例:一數(shù)的a倍(a/0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程ax=b(a/0)在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對(duì)x來(lái)說(shuō),字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。含有字母系數(shù)的方程的解法與以前學(xué)過(guò)的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零初二數(shù)學(xué)知識(shí)點(diǎn)歸納一次函數(shù)⑴正比例函數(shù):一般地,形如y=kx(k是常數(shù),k?0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);(2)正比例函數(shù)圖像特征:一些過(guò)原點(diǎn)的直線;(3)圖像性質(zhì):①當(dāng)k>0時(shí),函數(shù)y=kx的圖像經(jīng)過(guò)第一、三象限,從左向右上升,即隨著x的增大y也增大;②當(dāng)k<0時(shí),函數(shù)y=kx的圖像經(jīng)過(guò)第二、四象限,從左向右下降,即隨著x的增大y反而減小;(4)求正比例函數(shù)的解析式:已知一個(gè)非原點(diǎn)即可;⑸畫(huà)正比例函數(shù)圖像:經(jīng)過(guò)原點(diǎn)和點(diǎn)(1,k);(或另外一個(gè)非原點(diǎn))(6)一次函數(shù):一般地,形如y=kx+b(k、b是常數(shù),k?0)的函數(shù),叫做一次函數(shù);⑺正比例函數(shù)是一種特殊的一次函數(shù);(因?yàn)楫?dāng)b=0時(shí),y=kx+b即為y=kx)(8)一次函數(shù)圖像特征:一些直線;(9)性質(zhì):①丫二卜*與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個(gè)單位長(zhǎng)度而得;(當(dāng)b>0,向上平移;當(dāng)b<0,向下平移)②當(dāng)k>0時(shí),直線丫=卜乂+6由左至右上升,即y隨著x的增大而增大;③當(dāng)k<0時(shí),直線丫=卜乂+6由左至右下降,即y隨著x的增大而減小;④當(dāng)b>0時(shí),直線y=kx+b與y軸正半軸有交點(diǎn)為(0,b);⑤當(dāng)b<0時(shí),直線y=kx+b與y軸負(fù)半軸有交點(diǎn)為(0,b);(10)求一次函數(shù)的解析式:即要求k與b的值;(11)畫(huà)一次函數(shù)的圖像:已知兩點(diǎn);用函數(shù)觀點(diǎn)看方程(組)與不等式(1)解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值;從圖像上看,這相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo)的值;(2)解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時(shí),求自變量相應(yīng)的取值范圍;(3)每個(gè)二元一次方程都對(duì)應(yīng)一個(gè)一元一次函數(shù),于是也對(duì)應(yīng)一條直線;(4)一般地,每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線。從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo);初中數(shù)學(xué)提升方法1、課前預(yù)習(xí),認(rèn)真聽(tīng)講為什么要預(yù)習(xí),你要知道這一講哪些內(nèi)容你一開(kāi)始看不懂,那上課的時(shí)候?qū)τ谶@個(gè)問(wèn)題就要認(rèn)真聽(tīng),這樣聽(tīng)講更有針對(duì)性,比坐在教室里純被動(dòng)的聽(tīng)講效率高太多,自然,最終的效果也要好太多。2、課后刷題,總結(jié)歸納提高數(shù)學(xué)成績(jī)必須要刷題,在刷題量沒(méi)有達(dá)到一定程度之前,是沒(méi)有談方法和技巧的必要的。怎么刷題?其實(shí)每天的家庭作業(yè)就是刷題,一定要認(rèn)真完成,如果還有多的時(shí)間,那么可以刷往年的真題試卷,注意!一定是刷真題,刷真題不是說(shuō)整套整套刷,你就刷平時(shí)經(jīng)??鄯值哪菐最}。等你把刷過(guò)的題都

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論