版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆北京市西城區(qū)第三中學數(shù)學高一上期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角終邊上A點的坐標為,則()A.330 B.300C.120 D.602.下列函數(shù)是偶函數(shù)且值域為的是()①;②;③;④A.①② B.②③C.①④ D.③④3.如圖,四面體ABCD中,CD=4,AB=2,F(xiàn)分別是AC,BD的中點,若EF⊥AB,則EF與CD所成的角的大小是()A.30° B.45°C.60° D.90°4.若直線經(jīng)過兩點,,且傾斜角為,則的值為()A.2 B.1C. D.5.已知扇形的周長為8,圓心角為2弧度,則該扇形的面積為A B.C. D.6.直線和直線的距離是A. B.C. D.7.化簡A. B.C.1 D.8.下列四個函數(shù)中,在整個定義域內(nèi)單調(diào)遞減是A. B.C. D.9.已知三棱錐的三條棱,,長分別是3、4、5,三條棱,,兩兩垂直,且該棱錐4個頂點都在同一球面上,則這個球的表面積是A B.C. D.都不對10.角的終邊落在A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.若“”是“”的充要條件,則實數(shù)m的取值是_________12.已知圓(x-1)2+(y+2)2=6與直線2x+y-5=0的位置關系是__.(請?zhí)顚懀合嗲小⑾嘟?、相離)13.已知甲運動員的投籃命中率為0.7,乙運動員的投籃命中率為0.8,若甲、乙各投籃一次,則恰有一人命中的概率是___________14.已知直三棱柱的個頂點都在球的球面上,若,,,,則球的直徑為________15.已知點A(-1,1),B(2,-2),若直線l:x+my+m=0與線段AB相交(包含端點的情況),則實數(shù)m的取值范圍是________________.16.已知函數(shù)在區(qū)間,上恒有則實數(shù)的取值范圍是_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)的圖像關于原點對稱,當時,.(1)求函數(shù)f(x)的解析式;(2)求函數(shù)f(x)的單調(diào)區(qū)間.18.(1)計算:;(2)化簡:19.如圖,ABCD是一塊邊長為100米的正方形地皮,其中ATS是一座半徑為90米的扇形小山,P是弧TS上一點,其余部分都是平地.現(xiàn)有一開發(fā)商想在平地上建造一個兩邊分別落在BC與CD上的長方形停車場PQCR,求長方形停車場PQCR面積的最大值.20.如圖,直三棱柱的底面是邊長為2的正三角形,分別是的中點(1)證明:平面平面;(2)若直線與平面所成的角為,求三棱錐的體積21.某工廠進行廢氣回收再利用,把二氧化硫轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為200噸,最多為500噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關系可近似地表示為,且每處理一噸二氧化硫得到可利用的化工產(chǎn)品價值為100元.(1)該單位每月處理量為多少噸時,才能使每噸的月平均處理成本最低?(2)該工廠每月進行廢氣回收再利用能否獲利?如果獲利,求月最大利潤;如果不獲利,求月最大虧損額.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】根據(jù)特殊角的三角函數(shù)值求出點的坐標,再根據(jù)任意角三角函數(shù)的定義求出的值.【題目詳解】,,即,該點在第四象限,由,,得.故選:A.2、C【解題分析】根據(jù)奇偶性的定義依次判斷,并求函數(shù)的值域即可得答案.【題目詳解】對于①,是偶函數(shù),且值域為;對于②,是奇函數(shù),值域為;對于③,是偶函數(shù),值域為;對于④,偶函數(shù),且值域為,所以符合題意的有①④故選:C.3、A【解題分析】取BC的中點G,連結(jié)FG,EG.先證明出(或其補角)即為EF與CD所成的角.在直角三角形△EFG中,利用正弦的定義即可求出的大小.【題目詳解】取BC的中點G,連結(jié)FG,EG.由三角形中位線定理可得:AB∥EG,CD∥FG.所以(或其補角)即為EF與CD所成的角.因為EF⊥AB,則EF⊥EG.因為CD=4,AB=2,所以EG=1,FG=2,則△EFG是一個斜邊FG=2,一條直角邊EG=1的直角三角形,所以,因為為銳角,所以,即EF與CD所成的角為30°.故選:A4、A【解題分析】直線經(jīng)過兩點,,且傾斜角為,則故答案為A.5、A【解題分析】利用弧長公式、扇形的面積計算公式即可得出【題目詳解】設此扇形半徑為r,扇形弧長為l=2r則2r+2r=8,r=2,∴扇形的面積為r=故選A【題目點撥】本題考查了弧長公式、扇形的面積計算公式,屬于基礎題6、A【解題分析】因為直線即,故兩條平行直線和的距離故選A7、D【解題分析】先考慮分母化簡,利用降次公式,正切的兩角和與差公式打開,整理,可得答案【題目詳解】化簡分母得.故原式等于.故選D【題目點撥】本題主要考查了兩角和與差公式以及倍角公式.屬于基礎題8、C【解題分析】根據(jù)指數(shù)函數(shù)的性質(zhì)判斷,利用特殊值判斷,利用對數(shù)函數(shù)的性質(zhì)判斷,利用偶函數(shù)的性質(zhì)判斷【題目詳解】對于,,是指數(shù)函數(shù),在整個定義域內(nèi)單調(diào)遞增,不符合題意;對于,,有,,不是減函數(shù),不符合題意;對于,為對數(shù)函數(shù),整個定義域內(nèi)單調(diào)遞減,符合題意;對于,,為偶函數(shù),整個定義域內(nèi)不是單調(diào)函數(shù),不符合題意,故選C【題目點撥】本題主要考查指數(shù)函數(shù)的性質(zhì)、單調(diào)性是定義,對數(shù)函數(shù)的性質(zhì)以及偶函數(shù)的性質(zhì),意在考查綜合利用所學知識解答問題的能力,屬于中檔題9、B【解題分析】長方體的一個頂點上的三條棱分別為,且它的八個頂點都在同一個球面上,則長方體的對角線就是球的直徑,長方體的對角線為球的半徑為則這個球的表面積為故選點睛:本題考查的是球的體積和表面積以及球內(nèi)接多面體的知識點.由題意長方體的外接球的直徑就是長方體的對角線,求出長方體的對角線,就是求出球的直徑,然后求出球的表面積即可10、A【解題分析】根據(jù)角的定義判斷即可【題目詳解】,故為第一象限角,故選A【題目點撥】判斷角的象限,將大角轉(zhuǎn)化為一個周期內(nèi)的角即可二、填空題:本大題共6小題,每小題5分,共30分。11、0【解題分析】根據(jù)充要條件的定義即可求解.【題目詳解】,則{x|}={x|},即.故答案為:0.12、相交【解題分析】求得的圓心到直線的距離,與圓的半徑比較大小,即可得出結(jié)論.【題目詳解】圓的圓心為、半徑為,圓心到直線的距離為,小于半徑,所以直線和圓相交,故答案為相交.【題目點撥】本題主要考查直線和圓的位置關系的判斷方法,點到直線的距離公式的應用,屬于基礎題.解答直線與圓的位置關系的題型,常見思路有兩個:一是考慮圓心到直線的距離與半徑之間的大小關系;二是直線方程與圓的方程聯(lián)立,考慮運用判別式來解答.13、38##【解題分析】利用相互獨立事件概率乘法公式及互斥事件概率計算公式即求.【題目詳解】∵甲運動員的投籃命中率為0.7,乙運動員的投籃命中率為0.8,∴甲、乙各投籃一次,則恰有一人命中的概率是.故答案為:0.38.14、【解題分析】根據(jù)題設條件可以判斷球心的位置,進而求解【題目詳解】因為三棱柱的個頂點都在球的球面上,若,,,,所以三棱柱的底面是直角三角形,側(cè)棱與底面垂直,的外心是斜邊的中點,上下底面的中心連線垂直底面,其中點是球心,即側(cè)面,經(jīng)過球球心,球的直徑是側(cè)面的對角線的長,因為,,,所以球的半徑為:故答案為:15、【解題分析】本道題目先繪圖,然后結(jié)合圖像判斷該直線的位置,計算斜率,建立不等式,即可.【題目詳解】要使得與線段AB相交,則該直線介于1與2之間,1號直線的斜率為,2號直線的斜率為,建立不等式關系轉(zhuǎn)化為,所以或解得m范圍為【題目點撥】本道題考查了直線與直線的位置關系,結(jié)合圖像,判斷直線的位置,即可.16、【解題分析】根據(jù)對數(shù)函數(shù)的圖象和性質(zhì)可得,函數(shù)f(x)=loga(2x﹣a)在區(qū)間[]上恒有f(x)>0,即,或,分別解不等式組,可得答案【題目詳解】若函數(shù)f(x)=loga(2x﹣a)在區(qū)間[]上恒有f(x)>0,則,或當時,解得<a<1,當時,不等式無解.綜上實數(shù)的取值范圍是(,1)故答案為(,1).【題目點撥】本題考查的知識點是復合函數(shù)的單調(diào)性,及不等式的解法,其中根據(jù)對數(shù)函數(shù)的圖象和性質(zhì)構造不等式組是解答的關鍵,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【解題分析】(1)根據(jù)奇函數(shù)定義結(jié)合已知可得;(2)先求時的單調(diào)區(qū)間,然后由對稱性可得.【小問1詳解】∵函數(shù)f(x)的圖像關于原點對稱.∴.當時,,又時,,∴當時,.∴【小問2詳解】當時,函數(shù)的圖像開口向下,對稱軸為直線,∴函數(shù)f(x)在[0,3]上單調(diào)遞增,在[3,+∞)上單調(diào)遞減.又∵函數(shù)f(x)的圖像關于原點對稱,∴函數(shù)f(x)的單調(diào)遞減區(qū)間為;單調(diào)遞增區(qū)間為.18、(1);(2)【解題分析】(1)由題意利用對數(shù)的運算性質(zhì),計算求得結(jié)果(2)由題意利用誘導公式,計算求得結(jié)果【題目詳解】解:(1)(2)19、14050?9000(m2)【解題分析】設,然后表示出,進而表示出矩形PQCR的面積,再根據(jù)三角函數(shù)的相關知識化簡求值,解決問題.詳解】解:如圖,連接AP,設,延長RP交AB于M,則,,∴,.∴矩形PQCR的面積為設,則,∴,∴當時,.,故長方形停車場PQCR面積的最大值是.20、(Ⅰ)見解析;(Ⅱ).【解題分析】(1)由面面垂直的判定定理很容易得結(jié)論;(2)所求三棱錐底面積容易求得,是本題轉(zhuǎn)化為求三棱錐的高,利用直線與平面所成的角為,作出線面角,進而可求得的值,則可得的長試題解析:(1)如圖,因為三棱柱是直三棱柱,所以,又是正三角形的邊的中點,所以又,因此平面而平面,所以平面平面(2)設的中點為,連結(jié),因為是正三角形,所以又三棱柱是直三棱柱,所以因此平面,于是為直線與平面所成的角,由題設,,所以在中,,所以故三棱錐的體積考點:直線與平面垂直的判定定理;直線與平面所成的角;幾何體的體積.21、(1)400噸;(2)該工廠每月廢氣回收再利用不獲利,月最大虧損額為27500元.【解題分析】(1)由題意可知,二氧化碳每噸的平均處理成本為,化簡后再利用基本不等式即可求出最小值.(2)該單位每月獲利為元,則,由的范圍,利用二次函數(shù)的性質(zhì)得到的范圍即可得結(jié)論【題目詳解】(1)由題意可知,二氧化碳每噸的平均處理成本為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 下個季度男裝爆款怎么找?POP趨勢網(wǎng)全攻略:從趨勢到款式精準對接國內(nèi)市場
- 2025年事業(yè)單位人事個人年度工作總結(jié)
- 防疫安全教育微課課件
- 2026年度學校黨支部工作計劃
- 消防安全執(zhí)法支隊職責
- 發(fā)育生物學研究前景
- 廣電安全工作意義講解
- 五寶淺015-X1井建設工程環(huán)境影響報告書
- 女王的皇冠課件
- 創(chuàng)業(yè)法規(guī)考試題目及答案
- 中國淋巴瘤治療指南(2025年版)
- 2025年云南省人民檢察院聘用制書記員招聘(22人)考試筆試模擬試題及答案解析
- 2026年空氣污染監(jiān)測方法培訓課件
- 實習2025年實習實習期轉(zhuǎn)正協(xié)議合同
- 療傷旅館商業(yè)計劃書
- 購買電影票合同范本
- 2025西部機場集團航空物流有限公司招聘考試筆試備考題庫及答案解析
- 2025年廣西公需科目答案6卷
- 2025年鮑魚養(yǎng)殖合作協(xié)議合同協(xié)議
- 2025智慧消防行業(yè)市場深度調(diào)研及發(fā)展趨勢與投資前景預測研究報告
- 船舶入股協(xié)議書范本
評論
0/150
提交評論