版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題四導(dǎo)數(shù)及其應(yīng)用真題卷題號考點(diǎn)考向2023新課標(biāo)1卷11函數(shù)的極值極值點(diǎn)的定義19導(dǎo)數(shù)的應(yīng)用利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、利用導(dǎo)數(shù)研究不等式證明問題2023新課標(biāo)2卷6導(dǎo)數(shù)的應(yīng)用利用導(dǎo)數(shù)研究函數(shù)單調(diào)性11導(dǎo)數(shù)的應(yīng)用利用導(dǎo)數(shù)研究極值問題22導(dǎo)數(shù)的應(yīng)用利用導(dǎo)數(shù)研究不等式證明問題、已知極值點(diǎn)求參2022新高考1卷7比較大小利用導(dǎo)數(shù)比較大小10三次函數(shù)極值點(diǎn)、零點(diǎn)問題、函數(shù)的對稱性、導(dǎo)數(shù)的幾何意義15導(dǎo)數(shù)的幾何意義已知切線條數(shù)求參數(shù)的取值范圍22導(dǎo)數(shù)的應(yīng)用利用導(dǎo)數(shù)求函數(shù)的最值、利用導(dǎo)數(shù)研究零點(diǎn)問題2022新高考2卷14導(dǎo)數(shù)的幾何意義求切線方程22導(dǎo)數(shù)的應(yīng)用利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、利用導(dǎo)數(shù)研究恒成立問題與不等式證明問題2021新高考1卷7導(dǎo)數(shù)的幾何意義已知切線條數(shù)求參數(shù)的取值范圍15函數(shù)的最值利用導(dǎo)數(shù)求函數(shù)的最值22導(dǎo)數(shù)的應(yīng)用利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、利用導(dǎo)數(shù)研究不等式2021新高考2卷16導(dǎo)數(shù)的幾何意義已知切線位置關(guān)系求參數(shù)的取值范圍22導(dǎo)數(shù)的應(yīng)用利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、利用導(dǎo)數(shù)研究不等式2020新高考1卷21導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的應(yīng)用求函數(shù)的切線方程、利用導(dǎo)數(shù)研究恒成立問題2020新高考2卷22導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的應(yīng)用求函數(shù)的切線方程、利用導(dǎo)數(shù)研究恒成立問題【2023年真題】1.(2023·新高考=2\*ROMANII卷第6題)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增,則a的最小值為()A.SKIPIF1<0 B.e C.SKIPIF1<0 D.SKIPIF1<02.(2023·新課標(biāo)I卷第11題)(多選)已知函數(shù)SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0
C.SKIPIF1<0是偶函數(shù) D.SKIPIF1<0為SKIPIF1<0的極小值點(diǎn)3.(2023·新課標(biāo)=2\*ROMANII卷第11題)(多選)若函數(shù)SKIPIF1<0既有極大值也有極小值,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2023·新課標(biāo)I卷第19題)已知函數(shù)SKIPIF1<0討論SKIPIF1<0的單調(diào)性;SKIPIF1<0證明:當(dāng)SKIPIF1<0時,SKIPIF1<05.(2023·新高考=2\*ROMANII卷第22題)SKIPIF1<0證明:當(dāng)SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0已知函數(shù)SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0的極大值點(diǎn),求a的取值范圍.【2022年真題】6.(2022·新高考I卷第7題)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022·新高考I卷第10題)(多選)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0有兩個極值點(diǎn) B.SKIPIF1<0有三個零點(diǎn)
C.點(diǎn)SKIPIF1<0是曲線SKIPIF1<0的對稱中心 D.直線SKIPIF1<0是曲線SKIPIF1<0的切線8.(2022·新高考I卷第15題)若曲線SKIPIF1<0有兩條過坐標(biāo)原點(diǎn)的切線,則a的取值范圍是__________.9.(2022·新高考II卷第15題)曲線SKIPIF1<0經(jīng)過坐標(biāo)原點(diǎn)的兩條切線方程分別為__________,__________.10.(2022·新高考I卷第22題)已知函數(shù)SKIPIF1<0和SKIPIF1<0有相同的最小值.
SKIPIF1<0求SKIPIF1<0;
SKIPIF1<0證明:存在SKIPIF1<0直線,其與兩條曲線SKIPIF1<0和SKIPIF1<0共有三個不同的交點(diǎn),并且從左到右的三個交點(diǎn)的橫坐標(biāo)成等差數(shù)列.11.(2022·新高考II卷第22題)已知函數(shù)SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時,討論SKIPIF1<0的單調(diào)性;
SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,求實(shí)數(shù)a的取值范圍;
SKIPIF1<0設(shè)SKIPIF1<0,證明:SKIPIF1<0【2021年真題】12.(2021·新高考I卷第7題)若過點(diǎn)SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.(2021·新高考I卷第15題)函數(shù)SKIPIF1<0的最小值為__________.14.(2021·新高考II卷第16題)已知函數(shù),函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0的兩條切線互相垂直,且分別交y軸于M,N兩點(diǎn),則SKIPIF1<0取值范圍是__________.15.(2021·新高考I卷第22題)已知函數(shù)SKIPIF1<0SKIPIF1<0討論SKIPIF1<0的單調(diào)性.SKIPIF1<0設(shè)a,b為兩個不相等的正數(shù),且SKIPIF1<0,證明:SKIPIF1<016.(2021·新高考II卷第22題)已知函數(shù)SKIPIF1<0SKIPIF1<0討論SKIPIF1<0的單調(diào)性;SKIPIF1<0從下面兩個條件中選一個,證明:SKIPIF1<0有一個零點(diǎn).①SKIPIF1<0;②SKIPIF1<0【2020年真題】17.(2020·新高考I卷第21題、II卷第22題)已知函數(shù)SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與兩坐標(biāo)軸圍成的三角形的面積;SKIPIF1<0若SKIPIF1<0,求a的取值范圍.【答案解析】1.(2023·新高考=2\*ROMANII卷第6題)解:由題意,SKIPIF1<0對SKIPIF1<0恒成立,SKIPIF1<0,由于SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0,SKIPIF1<0故答案選:SKIPIF1<02.(2023·新課標(biāo)I卷第11題)(多選)解:選項(xiàng)A,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,故A正確;選項(xiàng)B,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,故B正確;選項(xiàng)C,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,再令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故C正確;選項(xiàng)D,不妨設(shè)SKIPIF1<0為常函數(shù),且滿足原題SKIPIF1<0,而常函數(shù)沒有極值點(diǎn),故D錯誤.故選:SKIPIF1<03.(2023·新課標(biāo)=2\*ROMANII卷第11題)(多選)解:因?yàn)镾KIPIF1<0,所以定義域?yàn)镾KIPIF1<0,得SKIPIF1<0,由題意知SKIPIF1<0有兩個不相等的正解SKIPIF1<0則,易得SKIPIF1<0故選SKIPIF1<04.(2023·新課標(biāo)I卷第19題)解:SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減.SKIPIF1<0時SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故當(dāng)SKIPIF1<0時SKIPIF1<0在SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0單調(diào)遞增.SKIPIF1<0由SKIPIF1<0知當(dāng)SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0單調(diào)遞增.故,令,SKIPIF1<0,令SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0單調(diào)遞增,,即SKIPIF1<0恒成立,即SKIPIF1<0,即當(dāng)SKIPIF1<0時,SKIPIF1<05.(2023·新高考=2\*ROMANII卷第22題)SKIPIF1<0證明:構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0;構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0,綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0解:由SKIPIF1<0,得函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0又SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),所以只需考慮區(qū)間SKIPIF1<0SKIPIF1<0,
令SKIPIF1<0,則SKIPIF1<0,
其中,
①若,記SKIPIF1<0時,易知存在SKIPIF1<0,使得SKIPIF1<0時,,SKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0,
SKIPIF1<0在SKIPIF1<0上遞增,這與SKIPIF1<0是SKIPIF1<0的極大值點(diǎn)矛盾,舍去.
②若,記SKIPIF1<0或SKIPIF1<0時,存在SKIPIF1<0,使得SKIPIF1<0時,,SKIPIF1<0在SKIPIF1<0上遞減,
注意到SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,,
滿足SKIPIF1<0是SKIPIF1<0的極大值點(diǎn),符合題意.
③若,即SKIPIF1<0時,由SKIPIF1<0為偶函數(shù),只需考慮SKIPIF1<0的情形.
此時SKIPIF1<0,SKIPIF1<0時,
SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞增,
這與SKIPIF1<0是SKIPIF1<0的極大值點(diǎn)矛盾,舍去.
綜上:a的取值范圍為SKIPIF1<06.(2022·新高考I卷第7題)解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
①SKIPIF1<0,
令SKIPIF1<0
則SKIPIF1<0,
故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,
可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;
②SKIPIF1<0,
令SKIPIF1<0
則SKIPIF1<0,
令SKIPIF1<0,所以SKIPIF1<0,
所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,
所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0
故SKIPIF1<07.(2022·新高考I卷第10題)(多選)解:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,
SKIPIF1<0或SKIPIF1<0;SKIPIF1<0,
所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,
所以SKIPIF1<0有兩個極值點(diǎn)SKIPIF1<0為極大值點(diǎn),SKIPIF1<0為極小值點(diǎn)SKIPIF1<0,故A正確;
又SKIPIF1<0,SKIPIF1<0,
所以SKIPIF1<0僅有1個零點(diǎn)SKIPIF1<0如圖所示SKIPIF1<0,故B錯;
又SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,故C正確;
對于D選項(xiàng),設(shè)切點(diǎn)SKIPIF1<0,在P處的切線為SKIPIF1<0,
即SKIPIF1<0,
若SKIPIF1<0是其切線,則SKIPIF1<0,方程組無解,所以D錯.8.(2022·新高考I卷第15題)解:SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,
故SKIPIF1<0,
即SKIPIF1<0
由題意可得,方程SKIPIF1<0在SKIPIF1<0上有兩個不相等的實(shí)數(shù)根.
化簡得,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,顯然此時0不是根,故滿足題意.9.(2022·新高考II卷第15題)解:當(dāng)SKIPIF1<0時,點(diǎn)SKIPIF1<0上的切線為SKIPIF1<0
若該切線經(jīng)過原點(diǎn),則SKIPIF1<0,解得SKIPIF1<0,
此的切線方程為SKIPIF1<0
當(dāng)SKIPIF1<0時,點(diǎn)SKIPIF1<0上的切線為SKIPIF1<0
若該切線經(jīng)過原點(diǎn),則SKIPIF1<0,解得SKIPIF1<0,
此時切線方程為SKIPIF1<010.(2022·新高考I卷第22題)解:SKIPIF1<0由題知SKIPIF1<0,SKIPIF1<0,
①當(dāng)SKIPIF1<0時,SKIPIF1<0,,SKIPIF1<0,則兩函數(shù)均無最小值,不符題意;
②當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增;
SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增;
故SKIPIF1<0,SKIPIF1<0,
所以SKIPIF1<0,即SKIPIF1<0,
令SKIPIF1<0,則SKIPIF1<0,
則SKIPIF1<0在SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0
SKIPIF1<0由SKIPIF1<0知,SKIPIF1<0,SKIPIF1<0,
且SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;
SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0
①SKIPIF1<0時,此時SKIPIF1<0,顯然SKIPIF1<0與兩條曲線SKIPIF1<0和SKIPIF1<0
共有0個交點(diǎn),不符合題意;
②SKIPIF1<0時,此時SKIPIF1<0,
故SKIPIF1<0與兩條曲線SKIPIF1<0和SKIPIF1<0共有2個交點(diǎn),交點(diǎn)的橫坐標(biāo)分別為0和1;
③SKIPIF1<0時,首先,證明SKIPIF1<0與曲線SKIPIF1<0有2個交點(diǎn),
即證明SKIPIF1<0有2個零點(diǎn),SKIPIF1<0,
所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,
又因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0
所以SKIPIF1<0在SKIPIF1<0上存在且只存在1個零點(diǎn),設(shè)為SKIPIF1<0,在SKIPIF1<0上存在且只存在1個零點(diǎn),設(shè)為SKIPIF1<0
其次,證明SKIPIF1<0與曲線和SKIPIF1<0有2個交點(diǎn),
即證明SKIPIF1<0有2個零點(diǎn),SKIPIF1<0,
所以SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,
又因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0
所以SKIPIF1<0在SKIPIF1<0上存在且只存在1個零點(diǎn),設(shè)為SKIPIF1<0,在SKIPIF1<0上存在且只存在1個零點(diǎn),設(shè)為SKIPIF1<0
再次,證明存在b,使得SKIPIF1<0
因?yàn)镾KIPIF1<0,所以SKIPIF1<0,
若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,
所以只需證明SKIPIF1<0在SKIPIF1<0上有解即可,
即SKIPIF1<0在SKIPIF1<0上有零點(diǎn),
因?yàn)镾KIPIF1<0,SKIPIF1<0,
所以SKIPIF1<0在SKIPIF1<0上存在零點(diǎn),取一零點(diǎn)為SKIPIF1<0,令SKIPIF1<0即可,
此時取SKIPIF1<0
則此時存在直線SKIPIF1<0,其與兩條曲線SKIPIF1<0和SKIPIF1<0共有三個不同的交點(diǎn),
最后證明SKIPIF1<0,即從左到右的三個交點(diǎn)的橫坐標(biāo)成等差數(shù)列,
因?yàn)镾KIPIF1<0
所以SKIPIF1<0,
又因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,
同理,因?yàn)镾KIPIF1<0,
又因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,
又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,
即直線SKIPIF1<0與兩條曲線SKIPIF1<0和SKIPIF1<0從左到右的三個交點(diǎn)的橫坐標(biāo)成等差數(shù)列.
11.(2022·新高考II卷第22題)解:SKIPIF1<0
當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;
當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.
SKIPIF1<0令SKIPIF1<0對SKIPIF1<0恒成立
又SKIPIF1<0
令SKIPIF1<0,則SKIPIF1<0
①若SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0
所以SKIPIF1<0使得當(dāng)時,有SKIPIF1<0單調(diào)遞增SKIPIF1<0,矛盾
②若SKIPIF1<0,即SKIPIF1<0時,
SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,
SKIPIF1<0,符合題意.
綜上所述,實(shí)數(shù)a的取值范圍是SKIPIF1<0
SKIPIF1<0求導(dǎo)易得SKIPIF1<0
令SKIPIF1<0
SKIPIF1<0
即SKIPIF1<0,證畢.
12.(2021·新高考I卷第7題)解:設(shè)切點(diǎn)為根據(jù)兩點(diǎn)之間斜率和導(dǎo)數(shù)的幾何意義,
易知SKIPIF1<0,整理得:SKIPIF1<0有兩解,
令SKIPIF1<0,
SKIPIF1<0,易知SKIPIF1<0最大值為SKIPIF1<0
即,
解得SKIPIF1<0,
又因?yàn)楫?dāng)x趨近正無窮時SKIPIF1<0,
當(dāng)x趨近負(fù)無窮時,SKIPIF1<0趨近SKIPIF1<0,則SKIPIF1<0綜上,SKIPIF1<0故選SKIPIF1<013.(2021·新高考I卷第15題)解:已知函數(shù),易知函數(shù)定義域?yàn)镾KIPIF1<0,①
:當(dāng)SKIPIF1<0時,,
所以SKIPIF1<0,在SKIPIF1<0單調(diào)遞減,②
當(dāng)SKIPIF1<0時,,所以SKIPIF1<0,
所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,又因?yàn)镾KIPIF1<0,所以最小值為SKIPIF1<0故答案為SKIPIF1<014.(2021·新高考II卷第16題)解:由題意,,則,所以點(diǎn)和點(diǎn),SKIPIF1<0,所以SKIPIF1<0,所以,所以,同理,所以故答案為:15.(2021·新高考I卷第22題)SKIPIF1<0解:的定義域?yàn)?/p>
,,由解得SKIPIF1<0,由解得SKIPIF1<0,在上單調(diào)遞增,在上單調(diào)遞減;SKIPIF1<0證明:由SKIPIF1<0可得SKIPIF1<0,整理得:SKIPIF1<0,即,不妨設(shè)SKIPIF1<0,且SKIPIF1<0,即,即證明SKIPIF1<0,由在上單調(diào)遞增,在上單調(diào)遞減,且,可得SKIPIF1<0,先證明SKIPIF1<0,令,SKIPIF1<0,,在上單調(diào)遞增,又SKIPIF1<0,,,即,由SKIPIF1<0可知在上單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0;下面再證明SKIPIF1<0,不妨設(shè)SKIPIF1<0
則SKIPIF1<0,由可得,化簡SKIPIF1<0
,要證SKIPIF1<0,即證,即證,即證,即證,設(shè),SKIPIF1<0,,令,SKIPIF1<0,,,在上單調(diào)遞減,,,在上單調(diào)遞減,,即,SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026秋招:美欣達(dá)集團(tuán)筆試題及答案
- 2026秋招:龍佰集團(tuán)試題及答案
- 2026秋招:利華益集團(tuán)筆試題及答案
- 2026秋招:蘭州蘭石集團(tuán)筆試題及答案
- 2026秋招:金鑼肉制品集團(tuán)筆試題及答案
- 2026秋招:江蘇海外企業(yè)集團(tuán)面試題及答案
- 提升涂膜劑耐候性技術(shù)指導(dǎo)書
- 2026年大學(xué)(城市地下空間工程)實(shí)踐應(yīng)用測試試題及答案
- 2026螞蟻集團(tuán)校招試題及答案
- 2026遼寧水資源管理和生態(tài)環(huán)保產(chǎn)業(yè)集團(tuán)秋招試題及答案
- 2025廣東省橫琴粵澳開發(fā)投資有限公司第二批社會招聘21人筆試歷年典型考點(diǎn)題庫附帶答案詳解試卷2套
- 塔吊拆除安全操作培訓(xùn)
- 2025年及未來5年中國抓娃娃機(jī)行業(yè)市場全景監(jiān)測及投資前景展望報告
- 國家安全生產(chǎn)十五五規(guī)劃
- 電機(jī)與拖動基礎(chǔ)期末試卷及答案
- 時尚男裝陳列課件
- 2025年本科院校實(shí)驗(yàn)員職位面試攻略及模擬題
- DJG330521-T 102-2024 企業(yè)能級工資集體協(xié)商工作評價規(guī)范
- 交警執(zhí)勤執(zhí)法培訓(xùn)課件
- 瓶裝水廠管理辦法
- 2025年港口碼頭安全隱患排查計劃
評論
0/150
提交評論