2023-2024學(xué)年北京市豐臺二中數(shù)學(xué)高二上期末預(yù)測試題含解析_第1頁
2023-2024學(xué)年北京市豐臺二中數(shù)學(xué)高二上期末預(yù)測試題含解析_第2頁
2023-2024學(xué)年北京市豐臺二中數(shù)學(xué)高二上期末預(yù)測試題含解析_第3頁
2023-2024學(xué)年北京市豐臺二中數(shù)學(xué)高二上期末預(yù)測試題含解析_第4頁
2023-2024學(xué)年北京市豐臺二中數(shù)學(xué)高二上期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年北京市豐臺二中數(shù)學(xué)高二上期末預(yù)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“”的一個充要條件是()A. B.C. D.2.“1<x<2”是“x<2”成立的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.設(shè)為橢圓上一點,,為左、右焦點,且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構(gòu)不成三角形4.若數(shù)列是等差數(shù)列,其前n項和為,若,且,則等于()A. B.C. D.5.過點且與原點距離最大的直線方程是()A. B.C. D.6.已知橢圓的左、右焦點分別為,為軸上一點,為正三角形,若,的中點恰好在橢圓上,則橢圓的離心率是()A. B.C. D.7.某一電子集成塊有三個元件a,b,c并聯(lián)構(gòu)成,三個元件是否有故障相互獨立.已知至少1個元件正常工作,該集成塊就能正常運行.若每個元件能正常工作的概率均為,則在該集成塊能夠正常工作的情況下,有且僅有一個元件出現(xiàn)故障的概率為()A. B.C. D.8.已知雙曲線=1的一條漸近線方程為x-4y=0,其虛軸長為()A.16 B.8C.2 D.19.拋物線的準線方程是A. B.C. D.10.已知等差數(shù)列滿足,則其前10項之和為()A.140 B.280C.68 D.5611.直線的傾斜角為()A.1 B.-1C. D.12.已知點是雙曲線的左、右焦點,以線段為直徑的圓與雙曲線在第一象限的交點為,若,則()A.與雙曲線的實軸長相等B.的面積為C.雙曲線的離心率為D.直線是雙曲線的一條漸近線二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)僅有一個零點,則實數(shù)的取值范圍是_________.14.若向量,,,且向量,,共面,則______15.若復(fù)數(shù)z=為純虛數(shù)(),則|z|=_____.16.設(shè)數(shù)列的前n項和為,且是6和的等差中項,若對任意的,都有,則的最小值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中a為正數(shù)(1)討論單調(diào)性;(2)求證:18.(12分)已知函數(shù)(1)若,求曲線在處的切線方程(2)討論函數(shù)的單調(diào)性19.(12分)為了保證我國東海油氣田海域海上平臺的生產(chǎn)安全,海事部門在某平臺O的北偏西45°方向km處設(shè)立觀測點A,在平臺O的正東方向12km處設(shè)立觀測點B,規(guī)定經(jīng)過O、A、B三點的圓以及其內(nèi)部區(qū)域為安全預(yù)警區(qū).如圖所示:以O(shè)為坐標原點,O的正東方向為x軸正方向,建立平面直角坐標系(1)試寫出A,B的坐標,并求兩個觀測點A,B之間的距離;(2)某日經(jīng)觀測發(fā)現(xiàn),在該平臺O正南10kmC處,有一艘輪船正以每小時km的速度沿北偏東45°方向行駛,如果航向不變,該輪船是否會進入安全預(yù)警區(qū)?如果不進入,請說明理由;如果進入,則它在安全警示區(qū)內(nèi)會行駛多長時間?20.(12分)設(shè)四邊形為矩形,點為平面外一點,且平面,若,.(1)求與平面所成角的大??;(2)在邊上是否存在一點,使得點到平面的距離為,若存在,求出的值,若不存在,請說明理由;(3)若點是的中點,在內(nèi)確定一點,使的值最小,并求此時的值.21.(12分)在①,②是與的等比中項,③這三個條件中任選一個,補充在下面的問題中,并解答問題:已知數(shù)列{}的前n項和為,,且滿足___(1)求數(shù)列{}的通項公式;(2)求數(shù)列{}前n項和注:如果選擇多個條件分別解答,按第一個解答計分22.(10分)2020年3月20日,中共中央、國務(wù)院印發(fā)了《關(guān)于全面加強新時代大中小學(xué)勞動教育的意見》(以下簡稱《意見》),《意見》中確定了勞動教育內(nèi)容要求,要求普通高中要注重圍繞豐富職業(yè)體驗,開展服務(wù)性勞動、參加生產(chǎn)勞動,使學(xué)生熟練掌握一定勞動技能,理解勞動創(chuàng)造價值,具有勞動自立意識和主動服務(wù)他人、服務(wù)社會的情懷.我市某中學(xué)鼓勵學(xué)生暑假期間多參加社會公益勞動,在實踐中讓學(xué)生利用所學(xué)知識技能,服務(wù)他人和社會,強化社會責任感,為了調(diào)查學(xué)生參加公益勞動的情況,學(xué)校從全體學(xué)生中隨機抽取100名學(xué)生,經(jīng)統(tǒng)計得到他們參加公益勞動的總時間均在15~65小時內(nèi),其數(shù)據(jù)分組依次為:,,,,,得到頻率分布直方圖如圖所示,其中(1)求,的值,估計這100名學(xué)生參加公益勞動的總時間的平均數(shù)(同一組中的每一個數(shù)據(jù)可用該組區(qū)間的中點值代替);(2)學(xué)校要在參加公益勞動總時間在、這兩組的學(xué)生中用分層抽樣的方法選取5人進行感受交流,再從這5人中隨機抽取2人進行感受分享,求這2人來自不同組的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】結(jié)合不等式的基本性質(zhì),利用充分條件和必要條件的定義判斷.【詳解】A.當時,滿足,推不出,故不充分;B.當時,滿足,推不出,故不充分;C.當時,推不出,故不必要;D.因為,故充要,故選:D2、A【解析】因為“若,則”是真命題,“若,則”是假命題,所以“”是“”成立的充分不必要條件.選A考點:充分必要條件的判斷【易錯點睛】本題主要考查了充分條件,必要條件,充要條件的判斷,屬于基礎(chǔ)題.對于命題“若,則”是真命題,我們說,并且說是的充分條件,是的必要條件,命題“若,則”是假命題,我們說,由充分條件,必要條件的定義,可以判斷出“”是“”成立的充分不必要條件.掌握充分條件,必要條件的定義是解題關(guān)鍵3、D【解析】根據(jù)橢圓方程求出,然后結(jié)合橢圓定義和已知條件求出并求出,進而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構(gòu)成三角形.故選:D.4、B【解析】由等差數(shù)列的通項公式和前項和公式求出的首項和公差,即可求出.【詳解】設(shè)等差數(shù)列的公差為,則解得:,所以.故選:B.5、A【解析】過點且與原點O距離最遠的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠的直垂直于直線,,∴過點且與原點O距離最遠的直線的斜率為,∴過點且與原點O距離最遠的直線方程為:,即.故選:A6、A【解析】根據(jù)題意得,取線段的中點,則根據(jù)題意得,,根據(jù)橢圓的定義可知,然后解出離心率的值.【詳解】因為為正三角形,所以,取線段的中點,連結(jié),則,所以,得,所以橢圓的離心率.故選:A.【點睛】求解離心率及其范圍的問題時,解題的關(guān)鍵在于畫出圖形,根據(jù)題目中的幾何條件列出關(guān)于,,的齊次式,然后得到關(guān)于離心率的方程或不等式求解7、A【解析】記事件為該集成塊能夠正常工作,事件為僅有一個元件出現(xiàn)故障,進而結(jié)合對立事件的概率公式得,再根據(jù)條件概率公式求解即可.【詳解】解:記事件為該集成塊能夠正常工作,事件為僅有一個元件出現(xiàn)故障,則為該集成塊不能正常工作,所以,,所以故選:A8、C【解析】根據(jù)雙曲線的漸近線方程的特點,結(jié)合虛軸長的定義進行求解即可.【詳解】因為雙曲線=1的一條漸近線方程為x-4y=0,所以,因此該雙曲線的虛軸長為,故選:C9、C【解析】根據(jù)拋物線的概念,可得準線方程為10、A【解析】根據(jù)等差數(shù)列的性質(zhì),可得,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由題意,等差數(shù)列滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以數(shù)列的前10項和為.故選:A.11、C【解析】根據(jù)直線斜率的定義即可求解.【詳解】,斜率為1,則傾斜角為.故選:C.12、B【解析】由題意及雙曲線的定義可得,的值,進而可得A不正確,計算可判斷B正確,再求出,的關(guān)系可得C不正確,求出,的關(guān)系,進而求出漸近線的方程,可得D不正確【詳解】因為,又由題意及雙曲線的定義可得:,則,,所以A不正確;因為在以為直徑的圓上,所以,所以,所以B正確;在△中,由勾股定理可得,即,所以離心率,所以C不正確;由C的分析可知:,故,所以漸近線的方程為,即,所以D不正確;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意求出函數(shù)的導(dǎo)函數(shù)并且通過導(dǎo)數(shù)求出原函數(shù)的單調(diào)區(qū)間,進而得到原函數(shù)的極值,因為函數(shù)僅有一個零點,所以結(jié)合函數(shù)的性質(zhì)可得函數(shù)的極大值小于或極小值大于,即可得到答案.【詳解】解:由題意可得:函數(shù),所以,令,則或,令,則,所以函數(shù)的單調(diào)增區(qū)間為和,減區(qū)間為所以當時函數(shù)有極大值,當時函數(shù)有極小值,,因為函數(shù)僅有一個零點,,所以或,解得或.所以實數(shù)的取值范圍是故答案為:14、##【解析】由向量共面的性質(zhì)列出方程組求解即可.【詳解】因為,,共面,所以存在實數(shù)x,y,使得,得,解得∴故答案為:15、【解析】利用復(fù)數(shù)z=為純虛數(shù)求出a,即可求出|z|.【詳解】z=.由純虛數(shù)的定義知,,解得.所以.故|z|=.故答案為:.16、【解析】先根據(jù)和項與通項關(guān)系得通項公式,再根據(jù)等比數(shù)列求和公式得,再根據(jù)函數(shù)單調(diào)性得取值范圍,即得取值范圍,解得結(jié)果.【詳解】因為是6和的等差中項,所以當時,當時,因此當為偶數(shù)時,當為奇數(shù)時,因此因為在上單調(diào)遞增,所以故答案為:【點睛】本題考查根據(jù)和項求通項、等比數(shù)列定義、等比數(shù)列求和公式、利用函數(shù)單調(diào)性求值域,考查綜合分析求解能力,屬較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)證明見解析【解析】(1)求解函數(shù)的導(dǎo)函數(shù),并且求的兩個根,然后分類討論,和三種情況下對應(yīng)的單調(diào)性;(2)令,通過二次求導(dǎo)法,判斷函數(shù)的單調(diào)性與最小值,設(shè)的零點為,求出取值范圍,最后將轉(zhuǎn)化為的對勾函數(shù)并求解最小值,即可證明出不等式.【小問1詳解】函數(shù)的定義域為∵令得∵,∴,得或①當,即時,時,或;時,.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增②當,即時,時,或;時,.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增③當,即時,∴在上單調(diào)遞增綜上所述:當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞增【小問2詳解】令,()∴,令∴,∴在上單調(diào)遞增又∵,,∴使得,即(*)∴當時,,∴,∴單調(diào)遞減∴當時,,∴,∴單調(diào)遞增∴,()由(*)式可知:,∴,∴∵,∴函數(shù)單調(diào)遞減∴,∴∴【點睛】求解本題的關(guān)鍵是利用二次求導(dǎo)法,通過虛設(shè)零點,求解原函數(shù)的單調(diào)性與最小值,并通過最小值的取值范圍證明不等式.18、(1)(2)答案見解析【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求得切線斜率,結(jié)合切點可得切線方程;(2)求導(dǎo)后,分別在、和的情況下,根據(jù)的正負可得的單調(diào)性.【小問1詳解】當時,,,,又,在處的切線方程為:,即;【小問2詳解】,令,解得:,;當時,,在上單調(diào)遞增;當時,若或,則;若,則;在和上單調(diào)遞增,在上單調(diào)遞減;當時,若或,則;若,則;在和上單調(diào)遞增,在上單調(diào)遞減;綜上所述:當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在和上單調(diào)遞增,在上單調(diào)遞減.19、(1);(2)會駛?cè)氚踩A(yù)警區(qū),行駛時長為半小時【解析】(1)先求出A,B的坐標,再由距離公式得出A,B之間的距離;(2)由三點的坐標列出方程組得出經(jīng)過三點的圓的方程,設(shè)輪船航線所在的直線為,再由幾何法得出直線與圓截得的弦長,進而得出安全警示區(qū)內(nèi)行駛時長.【小問1詳解】由題意得,∴;【小問2詳解】設(shè)圓的方程為,因為該圓經(jīng)過三點,∴,得到.所以該圓方程為:,化成標準方程為:.設(shè)輪船航線所在的直線為,則直線的方程為:,圓心(6,8)到直線的距離,所以直線與圓相交,即輪船會駛?cè)氚踩A(yù)警區(qū).直線與圓截得的弦長為,行駛時長小時.即在安全警示區(qū)內(nèi)行駛時長為半小時.20、(1)(2)存在,距離為(3)位置答案見解析,【解析】(1)利用線面垂直的判定定理證明平面,然后由線面角的定義得到PC與平面PAD所成的角為,在中,由邊角關(guān)系求解即可.(2)假設(shè)BC邊上存在一點G滿足題設(shè)條件,不放設(shè),則,再根據(jù)得,進而得答案.(3)延長CB到C',使得C'B=CB,連結(jié)C'E,過E作于E',利用三點共線,兩線段和最小,得到,過H作于H',連結(jié)HB,在中,求解HB即可.【小問1詳解】解:因為平面,平面,所以,又因為底面是矩形,所以,又平面,所以平面,故與平面所成的角為,因為,,所以故直線PC與平面PAD所成角的大小為;【小問2詳解】解:假設(shè)BC邊上存在一點G滿足題設(shè)條件,不妨設(shè),則因為平面,到平面的距離為所以,即因為代入數(shù)據(jù)解得,即,故存在點G,當時,使得點D到平面PAG的距離為;【小問3詳解】解:延長CB到C',使得C'B=CB,連結(jié)C'E,過E作于E',則,當且僅當三點共線時等號成立,故,過H作于H',連結(jié)HB,在中,,,所以.21、(1);(2).【解析】(1)選①,可得數(shù)列為等差數(shù)列,求出,由,可得數(shù)列的通項公式為選②是與的等比中項,可得,由,可得,從而利用累乘法求得數(shù)列的通項公式為選③,由,可得,則數(shù)列為等差數(shù)列,從而求出通項公式(2)由(1)知,求出,利用錯位相減求和法求出小問1詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論