2023-2024學年廣東省佛山一中數(shù)學高二上期末教學質量檢測試題含解析_第1頁
2023-2024學年廣東省佛山一中數(shù)學高二上期末教學質量檢測試題含解析_第2頁
2023-2024學年廣東省佛山一中數(shù)學高二上期末教學質量檢測試題含解析_第3頁
2023-2024學年廣東省佛山一中數(shù)學高二上期末教學質量檢測試題含解析_第4頁
2023-2024學年廣東省佛山一中數(shù)學高二上期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣東省佛山一中數(shù)學高二上期末教學質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,某鐵路客運部門設計的從甲地到乙地旅客托運行李的費用c(元)與行李質量w(kg)之間的流程圖.已知旅客小李和小張托運行李的質量分別為30kg,60kg,且他們托運的行李各自計費,則這兩人托運行李的費用之和為()A.28元 B.33元C.38元 D.48元2.某地區(qū)高中分三類,A類學校共有學生2000人,B類學校共有學生3000人,C類學校共有學生4000人,若采取分層抽樣的方法抽取900人,則A類學校中的學生甲被抽到的概率()A. B.C. D.3.已知直線,若異面,,則的位置關系是()A.異面 B.相交C.平行或異面 D.相交或異面4.如圖是等軸雙曲線形拱橋,現(xiàn)拱頂距離水面6米,水面寬米,若水面下降6米,則水面寬()A.米 B.米C.米 D.米5.雙曲線的離心率為,焦點到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.6.如圖,在四面體中,,分別是,的中點,則()A. B.C. D.7.某企業(yè)甲車間有200人,乙車間有300人,現(xiàn)用分層抽樣的方法在這兩個車間中抽取25人進行技能考核,則從甲車間抽取的人數(shù)應為()A.5 B.10C.8 D.98.在等比數(shù)列中,,,則等于()A.90 B.30C.70 D.409.函數(shù),的值域為()A. B.C. D.10.在平面直角坐標系中,直線+的傾斜角是()A. B.C. D.11.在空間四邊形OABC中,,,,點M在線段OA上,且,N為BC中點,則等于()A. B.C. D.12.如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.二、填空題:本題共4小題,每小題5分,共20分。13.瑞士著名數(shù)學家歐拉在1765年證明了定理:三角形的外心、重心、垂心位于同一條直線上,這條直線被后人稱為三角形的“歐拉線”.已知平面直角坐標系中各頂點的坐標分別為,,,則其“歐拉線”的方程為___________.14.若橢圓:的長軸長為4,焦距為2,則橢圓的標準方程為______.15.隨機變量X的取值為0,1,2,若,,則_________16.已知的頂點A(1,5),邊AB上的中線CM所在的直線方程為,邊AC上的高BH所在直線方程為,求(1)頂點C的坐標;(2)直線BC的方程;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,,且,,,,,為的中點(1)求證:平面;(2)在線段上是否存在一點,使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由18.(12分)如圖在直三棱柱中,為的中點,為的中點,是中點,是與的交點,是與的交點.(1)求證:;(2)求證:平面;(3)求直線與平面的距離.19.(12分)從①;②;③這三個條件中任選一個,補充在下面問題中,并作答設等差數(shù)列的前n項和為,,______;設數(shù)列的前n項和為,(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和注:作答前請先指明所選條件,如果選擇多個條件分別解答,按第一個解答計分20.(12分)已知數(shù)列是等差數(shù)列,(1)求的通項公式;(2)求的最大項21.(12分)已知圓M經過原點和點,且它的圓心M在直線上.(1)求圓M的方程;(2)若點D為圓M上的動點,定點,求線段CD的中點P的軌跡方程.22.(10分)已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項公式及前項的和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據程序框圖分別計算小李和小張托運行李的費用,再求和得出答案.【詳解】由程序框圖可知,當時,元;當時,元,所以這兩人托運行李的費用之和為元.故選:D2、D【解析】利用抽樣的性質求解【詳解】所有學生數(shù)為,所以所求概率為.故選:D3、D【解析】以正方體為載體說明即可.【詳解】如下圖所示的正方體:和是異面直線,,;和是異面直線,,與是異面直線.所以兩直線與是異面直線,,則的位置關系是相交或異面.故選:D4、B【解析】以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標系,求出雙曲線方程,數(shù)形結合即可求解.【詳解】如圖所示,以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標系,設雙曲線標準方程為:(a>0),則頂點,,將A點代入雙曲線方程得,,當水面下降6米后,,代入雙曲線方程得,,∴水面寬:米.故選:B.5、D【解析】不妨設雙曲線方程為,則,即設焦點為,漸近線方程為則又解得.則焦距為.選:D6、A【解析】利用向量的加法法則直接求解.【詳解】在四面體中,,分別是,的中點,故選:A7、B【解析】根據分層抽樣的定義即可求解.【詳解】從甲車間抽取的人數(shù)為人故選:B8、D【解析】根據等比數(shù)列的通項公式即可求出答案.【詳解】設該等比數(shù)列的公比為q,則,則.故選:D9、A【解析】利用基本不等式可得,進而可得,即求.【詳解】∵,∴,當且僅當,即時取等號,∴,,∴.故選:A.10、B【解析】由直線方程得斜率,從而得傾斜角【詳解】由直線方程知直角斜率為,在上正切值為1的角為,即為傾斜角故選:B11、B【解析】由題意結合圖形,直接利用,求出,然后即可解答.【詳解】解:因為空間四邊形OABC如圖,,,,點M在線段OA上,且,N為BC的中點,所以.所以.故選:B.12、C【解析】畫出直觀圖,利用椎體體積公式進行求解.【詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意知是直角三角形,即可寫出垂心、外心的坐標,進而可得“歐拉線”的方程.【詳解】由題設知:是直角三角形,則垂心為直角頂點,外心為斜邊的中點,∴“歐拉線”的方程為.故答案為:.14、【解析】由焦距可得c,長軸長得到a,再根據可得答案.【詳解】因為橢圓的長軸長為4,則,焦距為2,由,得,則橢圓的標準方程為:.故答案為:.15、##0.4【解析】設出概率,利用期望求出相應的概率,進而利用求方差公式進行求解.【詳解】設,則,從而,解得:,所以故答案為:16、(1);(2).【解析】(1)設出點C的坐標,進而根據點C在中線上及求得答案;(2)設出點B的坐標,進而求出點M的坐標,然后根據中線的方程及求出點B的坐標,進而求出直線BC的方程.【小問1詳解】設C點的坐標為,則由題知,即.【小問2詳解】設B點的坐標為,則中點M坐標代入中線CM方程則由題知,即,又,則,所以直線BC方程為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)存在,.【解析】(1)建立空間直角坐標系,求出平面的法向量和直線的單位向量,從而可證明線面平行.(2)令,,設,求出,結合已知條件可列出關于的方程,從而可求出的值.【詳解】證明:過作于點,則,以為原點,,,所在的直線分別為,,軸建立如圖所示的空間直角坐標系則,,,

,,,∵為的中點.∴.則,,,設平面的法向量為,則令,則,,∴.∴,即,又平面.∴平面解:令,,設,∴.∴,∴

.由知,平面的法向量為.∵直線與平面所成角的正弦值為,∴,化簡得,即,∵,∴,故【點睛】本題考查了利用空間向量證明線面平行,考查了平面法向量的求解,屬于中檔題.18、(1)證明見解析(2)證明見解析(3)【解析】(1)法一:通過建立空間直角坐標系,運用向量數(shù)量積證明,法二:通過線面垂直證明,法三:根據三垂線證明;(2)法一:通過建立空間直角坐標系,運用向量數(shù)量積證明,法二:通過面面平行證明線面平行;(3)法一:通過建立空間直角坐標系,運用向量方法求解,法二:運用等體積法求解.【小問1詳解】證明:法一:在直三棱柱中,因為,以點為坐標原點,方向分別為軸正方向建立如圖所示空間直角坐標系.因為,所以,所以所以,所以.法二:連接,在直三棱柱中,有面,面,所以,又,則,因為,所以面因為面,所以因為,所以四邊形為正方形,所以因為,所以面因為面,所以.法三:用三垂線定理證明:連接,在直三棱柱中,有面因為面,所以,又,則,因為,所以面所以在平面內的射影為,因為四邊形為正方形,所以,因此根據三垂線定理可知【小問2詳解】證明:法一:因為為的中點,為的中點,為中點,是與的交點,所以、,依題意可知為重心,則,可得所以,,設為平面的法向量,則即取得則平面的一個法向量為.所以,則,因為平面,所以平面.法二:連接.在正方形中,為的中點,所以且,所以四邊形是平行四邊形,所以又為中點,所以四邊形是矩形,所以且因為且,所以,所以四邊形為平行四邊形,所以.因為,平面平面平面平面,所以平面平面,平面,所以平面【小問3詳解】法一:由(2)知平面的一個法向量,且平面,所以到平面的距離與到平面的距離相等,,所以,所以點到平面的距離所以到平面的距離為法二:因為分別為和中點,所以為的重心,所以,所以到平面的距離是到平面距離的.取中點則,又平面平面,所以平面,所以到平面的距離與到平面的距離相等.設點到平面的距離為,由得,又,所以,所以到平面的距離是,所以到平面的距離為.19、(1)條件選擇見解析,,(2)【解析】(1)設數(shù)列的首項為,公差為d,選①由求解;選②由求解;選③由求解;則,由,利用數(shù)列通項與前n項和公式求解;(2)易知,再利用錯位相減法求解.【小問1詳解】解:設數(shù)列的首項為,公差為d,選①得,則,選②得,則,選③得,則,所以數(shù)列的通項公式為因為,所以當時,,則當時,,則,所以是以首項為2,公比為2的等比數(shù)列,所以【小問2詳解】因為,所以數(shù)列的前n項和①②①-②得∴,則20、(1);(2).【解析】(1)利用等差數(shù)列的通項公式進行求解即可;(2)運用二次函數(shù)的性質進行求解即可.【小問1詳解】設等差數(shù)列的公差為,所以有,所以;【小問2詳解】由(1)可知:,當時,有最大項,最大項為:.21、(1).(2).【解析】(1)設圓M的方程為,由已知條件建立方程組,求解即可;(2)設,,依題意得.代入圓M的方程可得點P的軌跡方程.【小問1詳解】解:設圓M的方程為,則圓心依題意得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論