2023-2024學(xué)年吉林省延吉市數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁(yè)
2023-2024學(xué)年吉林省延吉市數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁(yè)
2023-2024學(xué)年吉林省延吉市數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁(yè)
2023-2024學(xué)年吉林省延吉市數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁(yè)
2023-2024學(xué)年吉林省延吉市數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年吉林省延吉市數(shù)學(xué)高二上期末經(jīng)典試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.曲線上的點(diǎn)到直線的距離的最小值是()A.3 B.C.2 D.2.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.3.已知實(shí)數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或4.圓與圓的位置關(guān)系是()A.內(nèi)切 B.相交C.外切 D.相離5.已知雙曲線方程為,過點(diǎn)的直線與雙曲線只有一個(gè)公共點(diǎn),則符合題意的直線的條數(shù)共有()A.4條 B.3條C.2條 D.1條6.拋物線焦點(diǎn)坐標(biāo)為()A. B.C. D.7.設(shè)變量滿足約束條件:,則的最小值()A. B.C. D.8.過雙曲線(,)的左焦點(diǎn)作圓:的兩條切線,切點(diǎn)分別為,,雙曲線的左頂點(diǎn)為,若,則雙曲線的漸近線方程為()A. B.C. D.9.2021年是中國(guó)共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國(guó)共產(chǎn)黨成立100周年慶祝活動(dòng)標(biāo)識(shí)(如圖1).其中“100”的兩個(gè)“0”設(shè)計(jì)為兩個(gè)半徑為R的相交大圓,分別內(nèi)含一個(gè)半徑為r的同心小圓,且同心小圓均與另一個(gè)大圓外切(如圖2).已知,則由其中一個(gè)圓心向另一個(gè)小圓引的切線長(zhǎng)與兩大圓的公共弦長(zhǎng)之比為()A. B.3C. D.10.直線在y軸上的截距為()A.-1 B.1C. D.11.已知圓,圓C2:x2+y2-x-4y+7=0,則“a=1”是“兩圓內(nèi)切”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件12.在中,角所對(duì)的邊分別為,,,則外接圓的面積是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知方程,若此方程表示橢圓,則實(shí)數(shù)的取值范圍是________;若此方程表示雙曲線,則實(shí)數(shù)的取值范圍是________.14.若滿足約束條件,則的最大值為_________.15.設(shè)橢圓的左,右焦點(diǎn)分別為,,過的直線l與C交于A,B兩點(diǎn)(點(diǎn)A在x軸上方),且滿足,則直線l的斜率為______.16.已知一個(gè)四面體的每個(gè)頂點(diǎn)都在表面積為的球的表面上,且,,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時(shí),求在區(qū)間上的最值;(2)若在定義域內(nèi)有兩個(gè)零點(diǎn),求的取值范圍18.(12分)如圖1,已知矩形中,,E為上一點(diǎn)且.現(xiàn)將沿著折起,使點(diǎn)D到達(dá)點(diǎn)P的位置,且,得到的圖形如圖2.(1)證明為直角三角形;(2)設(shè)動(dòng)點(diǎn)M在線段上,判斷直線與平面位置關(guān)系,并說明理由.19.(12分)已知函數(shù)(1)若函數(shù)的圖象在點(diǎn)處的切線與平行,求b的值;(2)在(1)的條件下證明:20.(12分)如圖是一拋物線型機(jī)械模具的示意圖,該模具是拋物線的一部分且以拋物線的軸為對(duì)稱軸,已知頂點(diǎn)深度4cm,口徑長(zhǎng)為12cm(1)以頂點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系(如圖),求該拋物線的標(biāo)準(zhǔn)方程;(2)為滿足生產(chǎn)的要求,需將磨具的頂點(diǎn)深度減少1cm,求此時(shí)該磨具的口徑長(zhǎng)21.(12分)在中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,滿足.(1)求A;(2)若,求面積的最大值.22.(10分)如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點(diǎn),且.(1)求證:平面;(2)求二面角的正弦值;(3)設(shè)為棱上的點(diǎn)(不與,重合),且直線與平面所成角的正弦值為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】求出函數(shù)的導(dǎo)函數(shù),設(shè)切點(diǎn)為,依題意即過切點(diǎn)的切線恰好與直線平行,此時(shí)切點(diǎn)到直線的距離最小,求出切點(diǎn)坐標(biāo),再利用點(diǎn)到直線的距離公式計(jì)算可得;【詳解】解:因?yàn)椋?,設(shè)切點(diǎn)為,則,解得,所以切點(diǎn)為,點(diǎn)到直線的距離,所以曲線上的點(diǎn)到直線的距離的最小值是;故選:D2、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C3、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計(jì)算公式即可求得結(jié)果.【詳解】因?yàn)閷?shí)數(shù)成等比數(shù)列,故可得,解得或;當(dāng)時(shí),表示焦點(diǎn)在軸上的橢圓,此時(shí);當(dāng)時(shí),表示焦點(diǎn)在軸上的雙曲線,此時(shí).故選:C.4、B【解析】判斷圓心距與兩圓半徑之和、之差關(guān)系即可判斷兩圓位置關(guān)系.【詳解】由得圓心坐標(biāo)為,半徑,由得圓心坐標(biāo)為,半徑,∴,,∴,即兩圓相交.故選:B.5、A【解析】利用雙曲線漸近線的性質(zhì),結(jié)合一元二次方程根的判別式進(jìn)行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點(diǎn)為.①直線與雙曲線只有一個(gè)公共點(diǎn);②過點(diǎn)平行于漸近線時(shí),直線與雙曲線只有一個(gè)公共點(diǎn);③設(shè)過的切線方程為與雙曲線聯(lián)立,可得,由,即,解得,直線的條數(shù)為1.綜上可得,直線的條數(shù)為4.故選:A,.6、C【解析】由拋物線方程確定焦點(diǎn)位置,確定焦參數(shù),得焦點(diǎn)坐標(biāo)【詳解】拋物線的焦點(diǎn)在軸正半軸,,,,因此焦點(diǎn)坐標(biāo)為故選:C7、D【解析】如圖作出可行域,知可行域的頂點(diǎn)是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時(shí),的最小值為-8,故選D.8、C【解析】根據(jù),,可以得到,從而得到與的關(guān)系式,再由,,的關(guān)系,進(jìn)而可求雙曲線的漸近線方程【詳解】解:由,,則是圓的切線,,,,所以,因?yàn)殡p曲線的漸近線方程為,即為故選:C9、C【解析】作出圖形,進(jìn)而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.10、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A11、B【解析】先得出圓的圓心和半徑,求出兩圓心間的距離,半徑之差,根據(jù)兩圓內(nèi)切得出方程,從而得出答案.【詳解】圓的圓心半徑的圓心半徑兩圓心之間的距離為兩圓的半徑之差為當(dāng)兩圓內(nèi)切時(shí),,解得或所以當(dāng),可得兩圓內(nèi)切,當(dāng)兩圓內(nèi)切時(shí),不能得出(可能)故“”是“兩圓內(nèi)切”的充分不必要條件故選:B12、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【詳解】因?yàn)椋?,由余弦定理得,,所以,設(shè)外接圓的半徑為,由正統(tǒng)定理得,,所以,所以外接圓的面積是.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】分別根據(jù)橢圓、雙曲線的標(biāo)準(zhǔn)方程的特征建立不等式即可求解.【詳解】當(dāng)方程表示橢圓時(shí),則有且,所以的取值范圍是;當(dāng)方程表示雙曲線時(shí),則有或,所以的取值范圍是.故答案為:;14、7【解析】畫出約束條件所表示的平面區(qū)域,結(jié)合圖象和直線在軸上的截距,確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解.【詳解】畫出不等式組所表示的平面區(qū)域,如圖所示,目標(biāo)函數(shù)可化為,當(dāng)直線過點(diǎn)點(diǎn)時(shí),此時(shí)直線在軸上的截距最大,此時(shí)目標(biāo)函數(shù)取得最大值,又由,解得,即,所以目標(biāo)函數(shù)的最大值為.故答案為:.15、【解析】設(shè)出直線的方程并與橢圓方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系以及求得直線的斜率.【詳解】橢圓,由于在軸上方且直線的斜率存在,所以直線的斜率不為,設(shè)直線的方程為,且,由,消去并化簡(jiǎn)得,設(shè),,則①,②,由于,所以③,由①②③解得所以直線的方程為,斜率為.故答案為:16、【解析】由題意可得,該四面體的四個(gè)頂點(diǎn)位于一個(gè)長(zhǎng)方體的四個(gè)頂點(diǎn)上,設(shè)長(zhǎng)方體的長(zhǎng)寬高為,由題意可得:,據(jù)此可得:,則球的表面積:,結(jié)合解得:.點(diǎn)睛:與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個(gè)面的中心,正方體的棱長(zhǎng)等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對(duì)角線長(zhǎng)等于球的直徑.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)當(dāng)時(shí),求出導(dǎo)函數(shù),求出函數(shù)得單調(diào)區(qū)間,即可求出在區(qū)間上的最值;(2)由,分離參數(shù)得,根據(jù)函數(shù)得單調(diào)性作圖,結(jié)合圖像即可得出答案.【詳解】解:(1)當(dāng)時(shí),,,∴在單調(diào)遞減,在單調(diào)遞增,,,∴,(2),則,∴在單調(diào)遞增,在單調(diào)遞減,,當(dāng)時(shí),,當(dāng)時(shí),,作出函數(shù)和得圖像,∴由圖象可得,.18、(1)證明見解析(2)答案不唯一,見解析【解析】(1)利用折疊前后的線段長(zhǎng)度及勾股定理求證即可;(2)動(dòng)點(diǎn)M滿足時(shí)和,但時(shí)兩種情況,利用線線平行或相交得到結(jié)論.【小問1詳解】在折疊前的圖中,如圖:,E為上一點(diǎn)且,則,折疊后,所以,又,所以,所以為直角三角形.小問2詳解】當(dāng)動(dòng)點(diǎn)M在線段上,滿足,同樣在線段上取,使得,則,當(dāng)時(shí),則,又且所以,且,所以四邊形為平行四邊形,所以,又平面,所以此時(shí)平面;當(dāng)時(shí),此時(shí),但,所以四邊形為梯形,所以與必然相交,所以與平面必然相交.綜上,當(dāng)動(dòng)點(diǎn)M滿足時(shí),平面;當(dāng)動(dòng)點(diǎn)M滿足,但時(shí),與平面相交.19、(1);(2)證明見解析.【解析】(1)由題意可得,從而可求出,(2)先構(gòu)造函數(shù),利用導(dǎo)數(shù)可求得對(duì)任意恒成立,對(duì)任意恒成立,從而將問題轉(zhuǎn)化為只需證對(duì)任意恒成立,再次構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最大值小于等于即可【詳解】(1)解:∵函數(shù)的圖象在點(diǎn)處的切線與平行,∴,解得;證明:(2)由(1)得即對(duì)任意恒成立,令,則,∵當(dāng)時(shí),,∴函數(shù)在上單調(diào)遞增,∵,∴對(duì)任意恒成立,即對(duì)任意恒成立,∴只需證對(duì)任意恒成立即可,即只需證對(duì)任意恒成立,令,則,由單調(diào)遞減,且知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,∴,∴得證,故不等式對(duì)任意恒成立20、(1)(2)cm【解析】(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為,由題意可得拋物線過點(diǎn),將此點(diǎn)代入方程中可求出的值,從而可得拋物線方程,(2)設(shè)此時(shí)的口徑長(zhǎng)為,則拋物線過點(diǎn),代入拋物線方程可求出的值,從而可求得答案【小問1詳解】由題意,建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的標(biāo)準(zhǔn)方程為,因?yàn)轫旤c(diǎn)深度4,口徑長(zhǎng)為12,所以該拋物線過點(diǎn),所以,得,所以拋物線方程為;【小問2詳解】若將磨具的頂點(diǎn)深度減少,設(shè)此時(shí)的口徑長(zhǎng)為,則可得,得,所以此時(shí)該磨具的口徑長(zhǎng)21、(1)(2)【解析】(1)由正弦定理得,再由范圍可得答案;(2)由余弦定理和基本不等式可得,再由面積公式可得答案.【小問1詳解】∵,由正弦定理得,又,所以,又,則;【小問2詳解】由余弦定理得,即,所以,當(dāng)且僅當(dāng),取“=”,所以面積的最大值為22、(1)證明見解析;(2);(3).【解析】(1)由已知證得,,,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,根據(jù)向量垂直的坐標(biāo)表示和線面垂直的判定定理可得證;(2)根據(jù)二面角的空間向量求解方法可得答案;(3)設(shè),表示點(diǎn)Q,再利用線面角的空間向量求解方法,建立方程解得,可得答案.【詳解】(1)因?yàn)槠矫?,平面,平面,所以,,又因?yàn)?,則以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由已知可得,,,,,,所以,,,因?yàn)?,,所以,,又,平面,平面,所以平?(2)由(1)可知平面,可作為平面的法向量,設(shè)平面的法向量因?yàn)椋?所以,即,不妨設(shè),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論