版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年黑龍江省綏化市青岡縣一中數(shù)學高二上期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列雙曲線中,焦點在軸上且漸近線方程為的是A. B.C. D.2.如圖,某綠色蔬菜種植基地在A處,要把此處生產的蔬菜沿道路或運送到形狀為四邊形區(qū)域的農貿市場中去,現(xiàn)要求在農貿市場中確定一條界線,使位于界線一側的點沿道路運送蔬菜較近,而另一側的點沿道路運送蔬菜較近,則該界線所在曲線為()A.圓 B.橢圓C.雙曲線 D.拋物線3.將一張坐標紙折疊一次,使點與重合,求折痕所在直線是()A. B.C. D.4.在條件下,目標函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.805.下列說法中正確的是()A.棱柱的側面可以是三角形B.棱臺的所有側棱延長后交于一點C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長都相等6.在空間直角坐標系下,點關于軸對稱的點的坐標為()A. B.C. D.7.雙曲線的焦點坐標是()A. B.C. D.8.已知關于x的不等式的解集為空集,則的最小值為()A. B.2C. D.49.設函數(shù)在上可導,則等于()A. B.C. D.以上都不對10.如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內一定點,M是圓周上一動點,把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設CD與OM交于點P,則點P的軌跡是()A.圓 B.雙曲線C.拋物線 D.橢圓11.已知四棱柱ABCD-A1B1C1D1的底面是邊長為2的正方形,側棱與底面垂直,若點C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.12.若是真命題,是假命題,則A.是真命題 B.是假命題C.是真命題 D.是真命題二、填空題:本題共4小題,每小題5分,共20分。13.阿基米德(公元前287—公元前212年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.已知橢圓經過點,則當取得最大值時,橢圓的面積為_________14.用1,2,3,4,5組成沒有重復數(shù)字的五位數(shù),其中個位小于百位且百位小于萬位的五位數(shù)有n個,則的展開式中,的系數(shù)是___________.(用數(shù)字作答)15.已知對任意正實數(shù)m,n,p,q,有如下結論成立:若,則有成立,現(xiàn)已知橢圓上存在一點P,,為其焦點,在中,,,則橢圓的離心率為______16.若橢圓的焦點在軸上,過點作圓的切線,切點分別為,,直線恰好經過橢圓的上焦點和右頂點,則橢圓的方程是________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在空間四邊形中,分別是的中點,分別在上,且(1)求證:四點共面;(2)設與交于點,求證:三點共線.18.(12分)已知函數(shù)f(x)=(1)求函數(shù)f(x)在x=1處的切線方程;(2)求證:19.(12分)設等差數(shù)列的前項和為,已知,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)已知函數(shù).(1)若與在處有相同的切線,求實數(shù)的取值;(2)若時,方程在上有兩個不同的根,求實數(shù)的取值范圍.21.(12分)如圖,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E為棱BC上的點,且(1)求證:平面PAC;(2)求二面角A-PC-D的正弦值22.(10分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】焦點在軸上的是C和D,漸近線方程為,故選C考點:1.雙曲線的標準方程;2.雙曲線的簡單幾何性質2、C【解析】設是界限上的一點,則,即,再根據(jù)雙曲線的定義即可得出答案.【詳解】解:設是界限上的一點,則,所以,即,在中,,所以點的軌跡為雙曲線,即該界線所在曲線為雙曲線.故選:C.3、D【解析】設,,則折痕所在直線是線段AB的垂直平分線,故求出AB中點坐標,折痕與直線AB垂直,進而求出斜率,用點斜式求出折痕所在直線方程.【詳解】,,所以與的中點坐標為,又,所以折痕所在直線的斜率為1,故折痕所在直線是,即.故選:D4、C【解析】首先畫出可行域,找到最優(yōu)解,得到關系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標函數(shù)取最大值時必過N點,則則(當且僅當時等號成立)故選:C5、B【解析】根據(jù)棱柱、棱臺、球、正棱錐結構特征依次判斷選項即可.【詳解】棱柱的側面都是平行四邊形,A不正確;棱臺是由對應的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長并不是都相等,應該為正棱錐的側棱長都相等,所以D不正確.故選:B.6、C【解析】由空間中關于坐標軸對稱點坐標的特征可直接得到結果.【詳解】關于軸對稱的點的坐標不變,坐標變?yōu)橄喾磾?shù),關于軸對稱的點為.故選:C.7、B【解析】根據(jù)雙曲線的方程,求得,結合雙曲線的幾何性質,即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點再軸上,所以雙曲線的焦點坐標為.故選:B.8、D【解析】根據(jù)一元二次不等式的解集的情況得出二次項系數(shù)大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當且僅當取等號,所以的最小值為4.故答案為:4.【點睛】本題主要考查均值不等式,關鍵在于由一元二次不等式的解集的情況得出的關系,再將所求的式子運用不等式的性質降低元的個數(shù),運用均值不等式,是中檔題.9、C【解析】根據(jù)目標式,結合導數(shù)的定義即可得結果.【詳解】.故選:C10、D【解析】根據(jù)題意知,所以,故點P的軌跡是橢圓.【詳解】由題意知,關于CD對稱,所以,故,可知點P的軌跡是橢圓.【點睛】本題主要考查了橢圓的定義,屬于中檔題.11、A【解析】先由等面積法求得的長,再以為坐標原點,建立如圖所示的空間直角坐標系,運用線面角的向量求解方法可得答案【詳解】如圖,連接交于點,過點作于,則平面,則,設,則,則根據(jù)三角形面積得,代入解得以為坐標原點,建立如圖所示的空間直角坐標系則,,設平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:12、D【解析】因為是真命題,是假命題,所以是假命題,選項A錯誤,是真命題,選項B錯誤,是假命題,選項C錯誤,是真命題,選項D正確,故選D.考點:真值表的應用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用基本不等式得出取得最大值時的條件結合可知,再利用點在橢圓方程上,故可求得、的值,進而求出橢圓的面積.詳解】由基本不等式可得,當且僅當時取得最大值,由可知,∵橢圓經過點,∴,解得,,則橢圓的面積為.故答案為:.14、2022【解析】根據(jù)排列和組合計數(shù)公式求出,然后利用二項式定理進行求解即可【詳解】解:用1,2,3,4,5組成沒有重復數(shù)字的五位數(shù)中,滿足個位小于百位且百位小于萬位的五位數(shù)有個,即,當時,,則系數(shù)是,故答案為:202215、【解析】根據(jù)正弦定理,結合題意,列出方程,代入數(shù)據(jù),化簡即可得答案.詳解】由題意得:,所以,所以,解得.故答案為:16、【解析】設過點的圓的切線為,分類討論求得直線分別與圓的切線,求得直線的方程,從而得到直線與軸、軸的交點坐標,得到橢圓的右焦點和上頂點,進而求得橢圓的方程.【詳解】設過點的圓的切線分別為,即,當直線與軸垂直時,不存在,直線方程為,恰好與圓相切于點;當直線與軸不垂直時,原點到直線的距離為,解得,此時直線的方程為,此時直線與圓相切于點,因此,直線的斜率為,直線的方程為,所以直線交軸交于點,交于軸于點,橢圓的右焦點為,上頂點為,所以,可得,所以橢圓的標準方程為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,利用中位線定理和線段成比例,先證明,進而證明問題;(2)先證明平面,平面,進而證明點P在兩個平面的交線上,然后證得結論.【小問1詳解】連接分別是的中點,.在中,.所以四點共面.【小問2詳解】,所以,又平面平面,同理:,平面平面,為平面與平面的一個公共點.又平面平面,即三點共線.18、(1)y=5x-1;(2)證明見解析【解析】(1)求出導函數(shù),求出切線的斜率,切點坐標,然后求切線方程(2)不等式化簡為.設,求出導函數(shù),判斷函數(shù)的單調性求解函數(shù)的最值,然后證明即可【詳解】解:(1)的定義域為,的導數(shù)由(1)可得,則切點坐標為,所求切線方程為(2)證明:即證.設,則,由,得當時,;當時,在上單調遞增,在上單調遞減,(1),即不等式成立,則原不等式成立19、(1)(2)【解析】(1)根據(jù)已知條件求得等差數(shù)列的首項和公差,由此求得.(2)利用裂項求和法求得.【小問1詳解】設等差數(shù)列的公差為,則,解得,.∴.【小問2詳解】由(1)知.∴.∴.20、(1)(2)【解析】(1)根據(jù)導數(shù)的幾何意義求得函數(shù)在處的切線方程,再由有相同的切線這一條件即可求解;(2)先分離,再研究函數(shù)的單調性,最后運用數(shù)形結合的思想求解即可.【小問1詳解】設公切線與的圖像切于點,f'(x)=1+lnx?f由題意得:;【小問2詳解】當時,,①,①式可化為為,令令,,在上單調遞增,在上單調遞減.,當時,由題意知:21、(1)證明見解析(2)【解析】建立空間直角坐標系,計算出相關點的坐標,進而計算出相關向量的坐標;(1)計算向量的數(shù)量積,,根據(jù)數(shù)量積結果為零,證明線線垂直,進而證明線面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根據(jù)向量的夾角公式即可求解.【小問1詳解】證明:因為平面ABCD,平面ABCD,平面ABCD,所以,,又因為,則以A為坐標原點,分別以AB、AD、AP所在的直線為x、y、z軸建立空間直角坐標系,則,,,,,,,,,則,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小問2詳解】解:由(1)可知平面PAC,可作為平面PAC的法向量,設平面PCD的法向量,因為,所以,即,不妨設,得,又由圖示知二面角為銳角,所以二面角的正弦值為22、(1)證明見解析;(2).【解析】(1)連接交于點,連接,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年延安市人民醫(yī)院招聘(12人)筆試備考重點題庫及答案解析
- 2026浙江杭州電子科技大學學術學位博士研究生招生筆試備考重點試題及答案解析
- 2025中國機械工業(yè)集團有限公司紀檢監(jiān)察中心部分崗位招聘2人備考考試題庫及答案解析
- 2025萬祥社區(qū)衛(wèi)生服務中心衛(wèi)生室招聘備考考試題庫及答案解析
- 2026廣西南寧上林縣醫(yī)療集團招聘編外工作人員112人筆試備考重點題庫及答案解析
- 2025中國農業(yè)科學院蔬菜花卉所招聘編外財務人員1人備考考試題庫及答案解析
- 2025廣東文藝職業(yè)學院招聘事業(yè)編制人員5人筆試備考重點試題及答案解析
- 2025云南紅開投資有限公司第三次招聘2人筆試備考重點題庫及答案解析
- 2025國家統(tǒng)計局嘉峪關調查隊招聘公益性崗位人員4人筆試備考重點題庫及答案解析
- 2026廣東韶關市翁源縣招聘教師暨選聘教師134人(第一批編制)備考考試題庫及答案解析
- 紅日藥業(yè)醫(yī)學事務專員面試流程及題庫含答案
- 建筑工程管理??茖嵺`報告
- 2025年國家統(tǒng)計局齊齊哈爾調查隊公開招聘公益性崗位5人考試筆試備考試題及答案解析
- 兩棲及爬行動物多樣性保護-洞察及研究
- 香港的勞動合同范本
- 注銷公司股東協(xié)議書
- 如何進行護理教學查房
- 2025重慶水務集團股份有限公司招聘64人筆試考試參考試題及答案解析
- 安全月度工作匯報
- 糖尿病性腎病護理
- DB37-T 4441-2021 城市軌道交通互聯(lián)互通體系規(guī)范 PIS系統(tǒng)
評論
0/150
提交評論