2023-2024學(xué)年江蘇省泰興市實(shí)驗(yàn)初中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第1頁(yè)
2023-2024學(xué)年江蘇省泰興市實(shí)驗(yàn)初中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第2頁(yè)
2023-2024學(xué)年江蘇省泰興市實(shí)驗(yàn)初中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第3頁(yè)
2023-2024學(xué)年江蘇省泰興市實(shí)驗(yàn)初中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第4頁(yè)
2023-2024學(xué)年江蘇省泰興市實(shí)驗(yàn)初中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年江蘇省泰興市實(shí)驗(yàn)初中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知A(3,2),點(diǎn)F為拋物線的焦點(diǎn),點(diǎn)P在拋物線上移動(dòng),為使取得最小值,則點(diǎn)P的坐標(biāo)為()A.(0,0) B.(2,2)C. D.2.已知,若,則()A. B.C. D.3.圓和圓的位置關(guān)系是()A.內(nèi)含 B.內(nèi)切C.相交 D.外離4.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q5.在等腰中,在線段斜邊上任取一點(diǎn),則線段的長(zhǎng)度大于的長(zhǎng)度的概率()A. B.C. D.6.已知數(shù)列的前n項(xiàng)和為,,,則()A. B.C.1025 D.20497.若雙曲線一條漸近線被圓所截得的弦長(zhǎng)為,則雙曲線的離心率是()A. B.C. D.8.若橢圓上一點(diǎn)到C的兩個(gè)焦點(diǎn)的距離之和為,則()A.1 B.3C.6 D.1或39.已知集合A=()A. B.C.或 D.10.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.11.甲乙兩個(gè)雷達(dá)獨(dú)立工作,它們發(fā)現(xiàn)飛行目標(biāo)的概率分別是0.9和0.8,飛行目標(biāo)被雷達(dá)發(fā)現(xiàn)的概率為()A.0.72 B.0.26C.0.7 D.0.9812.?dāng)?shù)列,,,,…的一個(gè)通項(xiàng)公式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面幾何中有如下結(jié)論:若正三角形的內(nèi)切圓周長(zhǎng)為,外接圓周長(zhǎng)為,則.推廣到空間幾何可以得到類似結(jié)論:若正四面體的內(nèi)切球表面積為,外接球表面積為,則__________14.已知等差數(shù)列的公差為1,且是和的等比中項(xiàng),則前10項(xiàng)的和為_(kāi)__________.15.圓關(guān)于直線對(duì)稱的圓的方程為_(kāi)_____16.若平面內(nèi)兩定點(diǎn)A,B間的距離為2,動(dòng)點(diǎn)P滿足,則的最小值為_(kāi)________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱錐A-BCD中,O為線段BD中點(diǎn),是邊長(zhǎng)為1正三角形,且OA⊥BC,AB=AD(1)證明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE與平面BCD的夾角的余弦值18.(12分)已知在數(shù)列中,,且.(1)求,,并證明數(shù)列是等比數(shù)列;(2)求的通項(xiàng)公式及前n項(xiàng)和.19.(12分)在四棱錐中,底面為直角梯形,,,平面底面,為的中點(diǎn),是棱上的點(diǎn),,,.(1)求證:平面平面;(2)若,求直線與所成角的余弦值.20.(12分)保護(hù)生態(tài)環(huán)境,提倡環(huán)保出行,節(jié)約資源和保護(hù)環(huán)境,某地區(qū)從2016年開(kāi)始大力提倡新能源汽車,每年抽樣1000汽車調(diào)查,得到新能源汽車y輛與年份代碼x年的數(shù)據(jù)如下表:年份20162017201820192020年份代碼第x年12345新能源汽車y輛305070100110(1)建立y關(guān)于x的線性回歸方程;(2)假設(shè)該地區(qū)2022年共有30萬(wàn)輛汽車,用樣本估計(jì)總體來(lái)預(yù)測(cè)該地區(qū)2022年有多少新能源汽車參考公式:回歸方程斜率和截距的最小二乘估計(jì)公式分別為,21.(12分)已知拋物線C的對(duì)稱軸是y軸,點(diǎn)在曲線C上.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)過(guò)拋物線焦點(diǎn)的傾斜角為直線l與拋物線交于A、B兩點(diǎn),求線段AB的長(zhǎng)度.22.(10分)已知數(shù)列的前n項(xiàng)和為,且,,數(shù)列滿足:,,,.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和;(3)若不等式對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè)點(diǎn)P到準(zhǔn)線的距離為,根據(jù)拋物線的定義可知,即可根據(jù)點(diǎn)到直線的距離最短求出【詳解】如圖所示:設(shè)點(diǎn)P到準(zhǔn)線的距離為,準(zhǔn)線方程為,所以,當(dāng)且僅當(dāng)點(diǎn)為與拋物線的交點(diǎn)時(shí),取得最小值,此時(shí)點(diǎn)P的坐標(biāo)為故選:B2、B【解析】先求出的坐標(biāo),然后由可得,再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求解即可.【詳解】因?yàn)?,,所以,因?yàn)?,所以,即,解?故選:B3、C【解析】根據(jù)兩圓圓心的距離與兩圓半徑和差的大小關(guān)系即可判斷.【詳解】解:因?yàn)閳A的圓心為,半徑為,圓的圓心為,半徑為,所以兩圓圓心的距離為,因?yàn)?,即,所以圓和圓的位置關(guān)系是相交,故選:C.4、B【解析】取x=4,得出命題p是假命題,由對(duì)數(shù)的運(yùn)算得出命題q是假命題,再判斷選項(xiàng).【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.5、C【解析】利用幾何概型的長(zhǎng)度比值,即可計(jì)算.【詳解】設(shè)直角邊長(zhǎng),斜邊,則線段的長(zhǎng)度大于的長(zhǎng)度的概率.故選:C6、B【解析】根據(jù)題意得,進(jìn)而根據(jù)得數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,再根據(jù)等比數(shù)列求和公式求解即可.【詳解】解:因?yàn)閿?shù)列的前n項(xiàng)和為滿足,所以當(dāng)時(shí),,解得,當(dāng)時(shí),,即所以,解得或,因?yàn)?,所?所以,,所以當(dāng)時(shí),,所以,即所以數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,所以故選:B7、A【解析】根據(jù)(為弦長(zhǎng),為圓半徑,為圓心到直線的距離),求解出的關(guān)系式,結(jié)合求解出離心率的值.【詳解】取的一條漸近線,因?yàn)椋橄议L(zhǎng),為圓半徑,為圓心到直線的距離),其中,所以,所以,所以,所以,所以,故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解答本題的關(guān)鍵是利用幾何法表示出圓的半徑、圓心到直線的距離、半弦長(zhǎng)之間的關(guān)系.8、B【解析】討論焦點(diǎn)的位置利用橢圓定義可得答案.【詳解】若,則由得(舍去);若,則由得故選:B.9、A【解析】先求出集合,再根據(jù)集合的交集運(yùn)算,即可求出結(jié)果.【詳解】因?yàn)榧?,所?故選:A.10、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C11、D【解析】利用對(duì)立事件的概率求法求飛行目標(biāo)被雷達(dá)發(fā)現(xiàn)的概率.【詳解】由題設(shè),飛行目標(biāo)不被甲、乙發(fā)現(xiàn)的概率分別為、,所以飛行目標(biāo)被雷達(dá)發(fā)現(xiàn)的概率為.故選:D12、B【解析】根據(jù)給定數(shù)列,結(jié)合選項(xiàng)提供通項(xiàng)公式,將n代入驗(yàn)證法判斷是否為通項(xiàng)公式.【詳解】A:時(shí),排除;B:數(shù)列,,,,…滿足.C:時(shí),排除;D:時(shí),排除;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:平面圖形類比空間圖形,二維類比三維得到,類比平面幾何的結(jié)論,確定正四面體的外接球和內(nèi)切球的半徑之比,即可求得結(jié)論.詳解:平面幾何中,圓的周長(zhǎng)與圓的半徑成正比,而在空間幾何中,球的表面積與半徑的平方成正比,因?yàn)檎拿骟w的外接球和內(nèi)切球的半徑之比是,,故答案為.點(diǎn)睛:本題主要考查類比推理,屬于中檔題.類比推理問(wèn)題,常見(jiàn)的類型有:(1)等差數(shù)列與等比數(shù)列的類比;(2)平面與空間的類比;(3)橢圓與雙曲線的類比;(4)復(fù)數(shù)與實(shí)數(shù)的類比;(5)向量與數(shù)的類比.14、【解析】利用等比中項(xiàng)及等差數(shù)列通項(xiàng)公式求出首項(xiàng),再利用等差數(shù)列的前項(xiàng)和公式求出前10項(xiàng)的和.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,由已知條件得,即,,解得,則.故答案為:.15、【解析】求出圓心關(guān)于直線對(duì)稱點(diǎn),從而求出對(duì)稱圓的方程.【詳解】圓心為,半徑為1,設(shè)關(guān)于對(duì)稱點(diǎn)為,則,解得:,故對(duì)稱點(diǎn)為,故圓關(guān)于直線對(duì)稱的圓的方程為.故答案為:16、【解析】建立直角坐標(biāo)系,設(shè)出P的坐標(biāo),求出軌跡方程,然后推出的表達(dá)式,轉(zhuǎn)化求解最小值即可.【詳解】以經(jīng)過(guò)A,B的直線為x軸,線段AB的垂直平分線為y軸建立直角坐標(biāo)系.則設(shè),由,則,所以兩邊平方并整理得,所以P點(diǎn)的軌跡是以(3,0)為圓心,為半徑的圓,所以,,則有,則的最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)由題意可得OA⊥平面BCD,從而可證明.(2)作OF⊥BD交BC于點(diǎn)F,如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)F,OD,OA所在直線軸建立空間直角坐標(biāo)系,利用向量法可求解.【小問(wèn)1詳解】因?yàn)锳B=AD,O為BD中點(diǎn),所以O(shè)A⊥BD因?yàn)镺A⊥BC,且BD,BC平面BCD,BD∩BC=B,所以O(shè)A⊥平面BCD又因?yàn)镺A平面ABD,所以平面ABD⊥平面BCD【小問(wèn)2詳解】作OF⊥BD交BC于點(diǎn)F,如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)F,OD,OA所在直線軸建立空間直角坐標(biāo)系因?yàn)槿切蜲CD為邊長(zhǎng)為1的正三角形,且OA=OB=1,DE=2AE所以A(0,0,1),B(0,-1,0),設(shè)平面EBC的法向量為=()因?yàn)椤虰E,⊥BC,所以令,則,,所以已知平面BCD的法向量所以所以平面EBC與平面BCD的夾角的余弦值為18、(1),,證明見(jiàn)解析(2),【解析】(1)根據(jù)遞推關(guān)系求出,,對(duì)遞推公式變形,即可得證;(2)結(jié)合(1)求得通項(xiàng)公式,分組求和.【小問(wèn)1詳解】因?yàn)?,且所以,,∵,∴,∵,∴,且,∴?shù)列是等比數(shù)列.【小問(wèn)2詳解】由(1)可知是以為首項(xiàng),以3為公比的等比數(shù)列,即,即;.19、(1)證明見(jiàn)解析;(2);【解析】(1)證明,利用面面垂直的性質(zhì)可得出平面,再利用面面垂直的判定定理可證得平面平面;(2)連接,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為軸建立空間直角坐標(biāo)系,設(shè),根據(jù)可得出,求出的值,利用空間向量法可求得直線與所成角的余弦值.【詳解】(1)為的中點(diǎn),且,則,又因?yàn)?,則,故四邊形為平行四邊形,因?yàn)?,故四邊形為矩形,所以,平面平面,平面平面,平面,平面,因?yàn)槠矫?,因此,平面平面;?)連接,由(1)可知,平面,,為的中點(diǎn),則,以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系,則、、、、,設(shè),,因?yàn)?,則,解得,,,則.因此,直線與所成角的余弦值為.20、(1)(2)46800【解析】(1)第一步分別算第x,y的平均值,第二步利用,即可得到方程.(2)由第一問(wèn)的結(jié)果,帶入方程即可算出預(yù)估的結(jié)果.【小問(wèn)1詳解】,,,因?yàn)?,所以,所以【小?wèn)2詳解】預(yù)測(cè)該地區(qū)2022年抽樣1000汽車調(diào)查中新能源汽車數(shù),當(dāng)時(shí),,該地區(qū)2022年共有30萬(wàn)輛汽車,所以新能源汽車.21、(1)(2)16【解析】(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為:,再代入求解即可.(2)根據(jù)焦點(diǎn)弦公式求解即可.【小問(wèn)1詳解】由題意知拋物線C的對(duì)稱軸是y軸,點(diǎn)在曲線C上,所以拋物線開(kāi)口向上,設(shè)拋物線的標(biāo)準(zhǔn)方程為:,代入點(diǎn)的坐標(biāo)得:,解得則拋物線的標(biāo)準(zhǔn)方程為:.【小問(wèn)2詳解】焦點(diǎn),則直線的方程是,設(shè),,由得,,所以,則,故.22、(1),;(2);(3).【解析】(1)由可得數(shù)列是等比數(shù)列,即可求得,由得數(shù)列是等差數(shù)列,即可求得.(2)由(1)可得,再利用錯(cuò)位相減法求和即得.(3)將問(wèn)題等價(jià)轉(zhuǎn)化為對(duì)任意恒成立,構(gòu)造數(shù)列并判斷其單調(diào)性,即可求解作答.【小問(wèn)1詳解】數(shù)列的前項(xiàng)和為,,,當(dāng)時(shí),,則,而當(dāng)時(shí),,即得,因此,數(shù)列是以1為首項(xiàng),3為公比的等比

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論