版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年湖南省長沙市寧鄉(xiāng)縣第一高級中學高三下學期強化選填專練(二)數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.2.等比數(shù)列若則()A.±6 B.6 C.-6 D.3.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.14.圓心為且和軸相切的圓的方程是()A. B.C. D.5.已知向量與的夾角為,,,則()A. B.0 C.0或 D.6.已知集合,,則集合的真子集的個數(shù)是()A.8 B.7 C.4 D.37.函數(shù)的圖象大致是()A. B.C. D.8.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.49.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.10.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.611.已知函數(shù)是定義域為的偶函數(shù),且滿足,當時,,則函數(shù)在區(qū)間上零點的個數(shù)為()A.9 B.10 C.18 D.2012.如圖所示程序框圖,若判斷框內為“”,則輸出()A.2 B.10 C.34 D.98二、填空題:本題共4小題,每小題5分,共20分。13.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點,為坐標原點,若為等邊三角形,則雙曲線的離心率為______.14.設(其中為自然對數(shù)的底數(shù)),,若函數(shù)恰有4個不同的零點,則實數(shù)的取值范圍為________.15.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.16.設、滿足約束條件,若的最小值是,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,側棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.18.(12分)己知,,.(1)求證:;(2)若,求證:.19.(12分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點.(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.20.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.21.(12分)已知數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)若,,且數(shù)列前項和為,求的取值范圍.22.(10分)已知函數(shù).(1)若,求函數(shù)的單調區(qū)間;(2)若恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
作出其直觀圖,然后結合數(shù)據(jù)根據(jù)勾股定定理計算每一條棱長即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.2、B【解析】
根據(jù)等比中項性質代入可得解,由等比數(shù)列項的性質確定值即可.【詳解】由等比數(shù)列中等比中項性質可知,,所以,而由等比數(shù)列性質可知奇數(shù)項符號相同,所以,故選:B.【點睛】本題考查了等比數(shù)列中等比中項的簡單應用,注意項的符號特征,屬于基礎題.3、A【解析】
根據(jù)等差數(shù)列和等比數(shù)列公式直接計算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計算,意在考查學生的計算能力.4、A【解析】
求出所求圓的半徑,可得出所求圓的標準方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎題.5、B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.6、D【解析】
轉化條件得,利用元素個數(shù)為n的集合真子集個數(shù)為個即可得解.【詳解】由題意得,,集合的真子集的個數(shù)為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數(shù)問題,屬于基礎題.7、C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項;結合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎題.8、C【解析】
設直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.9、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結合(如圖),由解得.在內有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.10、B【解析】
利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是基礎題.11、B【解析】
由已知可得函數(shù)f(x)的周期與對稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關于x=1對稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數(shù),∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個交點,即函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)為10.故選:B.【點睛】本題考查函數(shù)的零點與方程根的關系,考查數(shù)學轉化思想方法與數(shù)形結合的解題思想方法,屬于中檔題.12、C【解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據(jù)為等邊三角形建立的關系式,從而可求離心率.【詳解】據(jù)題設分析知,,所以,得,所以雙曲線的離心率.【點睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關系式是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).14、【解析】
求函數(shù),研究函數(shù)的單調性和極值,作出函數(shù)的圖象,設,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,利用一元二次函數(shù)根的分布進行求解即可.【詳解】當時,,由得:,解得,由得:,解得,即當時,函數(shù)取得極大值,同時也是最大值,(e),當,,當,,作出函數(shù)的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,則,即(1)解得:,故答案為:【點睛】本題主要考查函數(shù)與方程的應用,利用換元法進行轉化一元二次函數(shù)根的分布以及.求的導數(shù),研究函數(shù)的的單調性和極值是解決本題的關鍵,屬于難題.15、【解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結合圖中數(shù)據(jù),計算它的體積為.故答案為:.【點睛】本題考查了根據(jù)三視圖求簡單組合體的體積應用問題,是基礎題.16、【解析】
畫出滿足條件的平面區(qū)域,求出交點的坐標,由得,顯然直線過時,最小,代入求出的值即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,則點.由得,顯然當直線過時,該直線軸上的截距最小,此時最小,,解得.故答案為:.【點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結合思想,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)的中點,連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點建立空間坐標系,求出平面的法向量,計算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點,連接,,,分別是,的中點,,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點,以,,為坐標軸建立空間直角坐標系,則,0,,,0,,,2,,,0,,,2,,是的中點,是的三等分點,,1,,,,,,,,,0,,,2,,設平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面平行的判定,空間向量與直線與平面所成角的計算,屬于中檔題.18、(1)證明見解析(2)證明見解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉化思想,屬于中檔題..19、(1)證明見解析;(2)【解析】
(1)取的中點,連接,易得,進而可證明四邊形為平行四邊形,即,從而可證明平面;(2)取中點,中點,連接,易證平面,平面,從而可知兩兩垂直,以點為坐標原點,向量的方向分別為軸正方向建立如圖所示空間直角坐標系,進而求出平面的法向量,及平面的法向量為,由,可求得平面與平面所成的二面角的正弦值.【詳解】(1)證明:如圖1,取的中點,連接.,,,,且,四邊形為平行四邊形,.又平面,平面,平面.(2)如圖2,取中點,中點,連接.,,平面平面,平面平面,平面,平面,兩兩垂直.以點為坐標原點,向量的方向分別為軸正方向建立如圖所示空間直角坐標系.由,可得,在等腰梯形中,,易知,.則,,設平面的法向量為,則,取,得.設平面的法向量為,則,取,得.因為,,,所以,所以平面與平面所成的二面角的正弦值為.【點睛】本題考查線面平行的證明,考查二面角的求法,利用空間向量法是解決本題的較好方法,屬于中檔題.20、(1)的極坐標方程為,的直角坐標方程為(2)【解析】
(1)先把曲線的參數(shù)方程消參后,轉化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點睛】本題考查極坐標方程與直角坐標方程、參數(shù)方程與普通方程的轉化、極坐標的幾何意義,還考查推理論證能力以及數(shù)形結合思想,屬于中檔題.21、(1)(2)【解析】
(1)由,可求,然后由時,可得,根據(jù)等比數(shù)列的通項可求(2)由,而,利用裂項相消法可求.【詳解】(1)當時,,解得,當時,①②②①得,即,數(shù)列是以2為首項,2為公比的等比數(shù)列,;(2)∴,∴,,.【點睛】本題考查遞推公式在數(shù)列的通項求解中的應用,等比數(shù)列的通項公式、裂項求和方法,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.22、(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數(shù)的解析式,利用導數(shù)可得出函數(shù)的單調區(qū)間;(2)求函數(shù)的導數(shù),分類討論的范圍,利用導數(shù)分析函數(shù)的單調性,求出函數(shù)的最值可判斷是否恒成立,可得實數(shù)的取值范圍.【詳解】(1)當時,,則,當時,,則,此時,函數(shù)為減函數(shù);當時,,則,此時,函數(shù)為增函數(shù).所以,函數(shù)的增區(qū)間為,減
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五保供養(yǎng)培訓課件
- 2026年劇本殺運營公司行業(yè)規(guī)范遵守管理制度
- 幼兒園開展戶外游戲活動促進兒童社交能力發(fā)展課題報告教學研究課題報告
- 2026年無人駕駛汽車安全報告
- 2025年社區(qū)養(yǎng)老服務培訓基地建設與養(yǎng)老行業(yè)人才培養(yǎng)機制可行性研究報告
- 2026年醫(yī)療物聯(lián)網(wǎng)技術應用報告
- 普通高中課程方案和課程標準變化的時代價值與教師應對
- 眼巢護理基礎理論培訓
- 2026及未來5年中國智能化工程行業(yè)市場動態(tài)分析及發(fā)展趨向研判報告
- 2025年韓國金融科技監(jiān)管政策變化分析報告
- 人教版數(shù)學四年級上冊期末測試卷及答案 (共八套)-2
- 淮安市2022-2023學年七年級上學期期末道德與法治試題【帶答案】
- 大轉爐氧槍橡膠軟管和金屬軟管性能比較
- 四川省內江市2023-2024學年高二上學期期末檢測生物試題
- 02-廢氣收集系統(tǒng)-風管設計課件
- 2022ABBUMC100.3智能電機控制器
- 天津東疆我工作圖0718
- GB/T 19367-2022人造板的尺寸測定
- 北京春季化學會考試卷及答案
- 數(shù)學建模插值與擬合
- GB/T 34528-2017氣瓶集束裝置充裝規(guī)定
評論
0/150
提交評論