版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省汕頭市龍湖區(qū)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知全集,集合,,則()A. B.C. D.2.已知、,則直線的傾斜角為()A. B.C. D.3.在中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,,,則的面積為()A. B.1C. D.24.已知,若與的展開式中的常數(shù)項(xiàng)相等,則()A.1 B.3C.6 D.95.在正方體中,分別是線段的中點(diǎn),則點(diǎn)到直線的距離是()A. B.C. D.6.已知兩個(gè)向量,若,則的值為()A. B.C.2 D.87.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.8.橢圓上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則到另一個(gè)焦點(diǎn)的距離是()A. B.C. D.9.復(fù)數(shù)的共軛復(fù)數(shù)是A. B.C. D.10.中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為,實(shí)軸長(zhǎng)為2,則雙曲線C的方程為()A. B.C. D.11.如圖是正方體的平面展開圖,在這個(gè)正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個(gè)結(jié)論中,正確結(jié)論的序號(hào)是A.①②③ B.②④C.③④ D.②③④12.南宋數(shù)學(xué)家楊輝在《詳解九章算術(shù)法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般的等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項(xiàng)之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項(xiàng)分別為2,3,5,8,12,17,23,則該數(shù)列的第31項(xiàng)為()A.336 B.467C.483 D.601二、填空題:本題共4小題,每小題5分,共20分。13.橢圓x2+=1上的點(diǎn)到直線x+y-4=0的距離的最小值為_________.14.設(shè),滿足約束條件,則的最大值是_________.15.已知橢圓:的右焦點(diǎn)為,且經(jīng)過點(diǎn)(1)求橢圓的方程以及離心率;(2)若直線與橢圓相切于點(diǎn),與直線相交于點(diǎn).在軸是否存在定點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由16.已知兩點(diǎn)和則以為直徑的圓的標(biāo)準(zhǔn)方程是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:的焦點(diǎn)是圓與軸的一個(gè)交點(diǎn).(1)求拋物線的方程;(2)若過點(diǎn)的直線與拋物線交于不同的兩點(diǎn)A、B,О為坐標(biāo)原點(diǎn),證明:.18.(12分)2017年廈門金磚會(huì)晤期間產(chǎn)生碳排放3095噸.2018年起廈門市政府在下潭尾濕地生態(tài)公園通過種植紅樹林的方式中和會(huì)晤期間產(chǎn)生的碳排放,擬用20年時(shí)間將碳排放全部吸收,實(shí)現(xiàn)“零碳排放”目標(biāo),向世界傳遞低碳,環(huán)保辦會(huì)的積極信號(hào),踐行金磚國(guó)家倡導(dǎo)的可持續(xù)發(fā)展精神據(jù)研究估算,紅樹林的年碳吸收量隨著林齡每年遞增2%,2018年公園已有的紅樹林年碳吸收量為130噸,如果從2019年起每年新種植紅樹林若干畝,新種植的紅樹林當(dāng)年的年碳吸收量為m()噸.2018年起,紅樹林的年碳吸收量依次記,,,…(1)①寫出一個(gè)遞推公式,表示與之間的關(guān)系;②證明:是等比數(shù)列,并求的通項(xiàng)公式;(2)為了提前5年實(shí)現(xiàn)廈門會(huì)晤“零碳排放”的目標(biāo),m的最小值為多少?參考數(shù)據(jù):,,19.(12分)如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的封閉圖形.(1)設(shè),,求這個(gè)幾何體的表面積;(2)設(shè)G是弧DF的中點(diǎn),設(shè)P是弧CE上的一點(diǎn),且.求異面直線AG與BP所成角的大小.20.(12分)如圖,在四棱錐中,四邊形為正方形,已知平面,且,E為中點(diǎn)(1)證明:平面;(2)證明:平面平面21.(12分)已知公差不為0的等差數(shù)列,前項(xiàng)和為,首項(xiàng)為,且成等比數(shù)列.(1)求和;(2)設(shè),記,求.22.(10分)已知橢圓的短軸長(zhǎng)是2,且離心率為(1)求橢圓E的方程;(2)已知,若直線與橢圓E相交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,是否存在常數(shù),使恒成立,并說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先求,然后求.【詳解】,,.故選:A2、B【解析】設(shè)直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進(jìn)而可得出直線的傾斜角.【詳解】設(shè)直線的傾斜角為,由斜率公式可得,,因此,.故選:B.3、C【解析】由余弦定理求出,利用正弦定理將邊化角,再根據(jù)二倍角公式得到,即可得到,最后利用面積公式計(jì)算可得;【詳解】解:因?yàn)?,又,所以,因?yàn)?,所以,所以,因?yàn)椋?,即,所以或,即或(舍去),所以,因?yàn)?,所以,所以;故選:C4、B【解析】根據(jù)二項(xiàng)展開式的通項(xiàng)公式即可求出【詳解】的展開式中的常數(shù)項(xiàng)為,而的展開式中的常數(shù)項(xiàng)為,所以,又,所以故選:B5、A【解析】以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系,然后,列出計(jì)算公式進(jìn)行求解即可【詳解】如圖,以為坐標(biāo)原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系.因?yàn)?,所以,所以,則點(diǎn)到直線的距離故選:A6、B【解析】直接利用空間向量垂直的坐標(biāo)運(yùn)算計(jì)算即可.【詳解】因?yàn)?,所以,即,解?故選:B7、C【解析】作出輔助線,找到異面直線與所成角,進(jìn)而利用余弦定理及勾股定理求出各邊長(zhǎng),最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補(bǔ)成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C8、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個(gè)焦點(diǎn)的距離是.故選:B.9、B【解析】因,故其共軛復(fù)數(shù).應(yīng)選B.考點(diǎn):復(fù)數(shù)的概念及運(yùn)算.10、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進(jìn)行求解即可【詳解】解:設(shè)雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D11、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點(diǎn)的分布逐項(xiàng)判斷可得正確的選項(xiàng).【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯(cuò)誤,④正確.連接,則為等邊三角形,而,故或其補(bǔ)角為與所成的角,因?yàn)?,故與所成的角為,故③正確.綜上,正確命題的序號(hào)為:③④.故選:C.【點(diǎn)睛】本題考查正方體的平面展開圖,注意展開圖中的點(diǎn)與正方體中的頂點(diǎn)的對(duì)應(yīng)關(guān)系,本題屬于容易題.12、B【解析】先由遞推關(guān)系利用累加法求出通項(xiàng)公式,直接帶入即可求得.【詳解】根據(jù)題意,數(shù)列2,3,5,8,12,17,23……滿足,,所以該數(shù)列的第31項(xiàng)為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)與直線x+y-4=0平行的直線方程為,求出即得解.【詳解】解:設(shè)與直線x+y-4=0平行的直線方程為,所以,代入橢圓方程得,令或.當(dāng)時(shí),平行線間的距離為;當(dāng)時(shí),平行線間的距離為.所以最小距離為.故答案為:.14、5【解析】由題可知表示點(diǎn)與點(diǎn)連線的斜率,再畫出可行域結(jié)合圖像知知.【詳解】x,y滿足約束條件,滿足的可行域如圖:則的幾何意義是可行域內(nèi)的點(diǎn)與(﹣3,﹣2)連線的斜率,通過分析圖像得到當(dāng)經(jīng)過A時(shí),目標(biāo)函數(shù)取得最大值由可得A(﹣2,3),則的最大值是:故答案為5【點(diǎn)睛】(1)在平面直角坐標(biāo)系內(nèi)作出可行域(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型)(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值15、(1),;(2)存在定點(diǎn),為【解析】(1)利用,,求解方程(2)設(shè)直線方程為,與橢圓聯(lián)立利用判別式等于0得,并求得切點(diǎn)坐標(biāo)及,假設(shè)存在點(diǎn),利用化簡(jiǎn)求值【詳解】(1)由已知得,,,,橢圓的方程為,離心率為;(2)在軸存在定點(diǎn),為使,證明:設(shè)直線方程為代入得,化簡(jiǎn)得由,得,,設(shè),則,,則,設(shè),則,則假設(shè)存在點(diǎn)解得所以在軸存在定點(diǎn)使【點(diǎn)睛】本題考查直線與橢圓的位置關(guān)系,考查切線的應(yīng)用,利用判別式等于0得坐標(biāo)是解決問題的關(guān)鍵,考查計(jì)算能力,是中檔題16、【解析】根據(jù)的中點(diǎn)是圓心,是半徑,即可寫出圓的標(biāo)準(zhǔn)方程.【詳解】因?yàn)楹?,故可得中點(diǎn)為,又,故所求圓的半徑為,則所求圓的標(biāo)準(zhǔn)方程是:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)由圓與軸的交點(diǎn)分別為,可得拋物線的焦點(diǎn)為,從而即可求解;(2)設(shè)直線為,聯(lián)立拋物線方程,由韋達(dá)定理及,求出即可得證.【小問1詳解】解:由題意知,圓與軸的交點(diǎn)分別為,則拋物線的焦點(diǎn)為,所以,所以拋物線方程為;【小問2詳解】證明:設(shè)直線為,聯(lián)立方程,有,所以,所以,所以.18、(1)①;②證明見解析,(2)最少為6.56噸【解析】(1)①根據(jù)題意直接寫出一個(gè)遞推公式即可;②要證明是等比數(shù)列,只要證明為一個(gè)常數(shù)即可,求出等比數(shù)列的通項(xiàng)公式,即可求出的通項(xiàng)公式;(2)記為數(shù)列的前n項(xiàng)和,根據(jù)題意求出,利用分組求和法求出數(shù)列的前n項(xiàng)和,再令,解之即可得出答案.【小問1詳解】解:①依題意得,則,②因?yàn)椋?,所以,因?yàn)樗詳?shù)列是等比數(shù)列,首項(xiàng)是,公比是1.02,所以,所以;【小問2詳解】解:記為數(shù)列的前n項(xiàng)和,,依題,所以,所以m最少為6.56噸19、(1)(2)【解析】(1)將幾何體的表面積分成上下兩個(gè)扇形、兩個(gè)矩形和一個(gè)圓柱形側(cè)面的一部分組成,分別求出后相加即可;(2)先根據(jù)條件得到面,通過平移將異面直線轉(zhuǎn)化為同一個(gè)平面內(nèi)的直線夾角即可【小問1詳解】上下兩個(gè)扇形的面積之和為:兩個(gè)矩形面積之和為:4側(cè)面圓弧段的面積為:故這個(gè)幾何體的表面積為:【小問2詳解】如下圖,將直線平移到下底面上為由,且,,可得:面則而G是弧DF的中點(diǎn),則由于上下兩個(gè)平面平行且全等,則直線與直線的夾角等于直線與直線的夾角,即為所求,則則直線與直線的夾角為20、(1)證明見解析(2)證明見解析【解析】(1)設(shè)與交于點(diǎn),連結(jié),易證,再利用線面平行的判斷定理即可證得答案;(2)利用線面垂直的判定定理可得平面,再由面面垂直的判斷定理即可.【小問1詳解】連接交于,連接因?yàn)榈酌媸钦叫?,所以為中點(diǎn),因?yàn)樵谥?,是的中點(diǎn),所以,因?yàn)槠矫嫫矫?,所以平面【小?詳解】側(cè)棱底面底面,所以,因?yàn)榈酌媸钦叫?,所以,因?yàn)榕c為平面內(nèi)兩條相交直線,所以平面,因?yàn)槠矫妫云矫嫫矫?21、(1)(2)【解析】(1)由題意解得等差數(shù)列的公差,代入公式即可求得和;(2)把n分為奇數(shù)和偶數(shù)兩類,分別去數(shù)列的前n項(xiàng)和.【小問1詳解】設(shè)等差數(shù)列公差為,由題有,即,解之
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆北京市朝陽(yáng)區(qū)高三上學(xué)期期末質(zhì)量檢測(cè)歷史試題(含答案)
- 試驗(yàn)員鐵路考試題及答案
- 山西人證考試題庫(kù)及答案
- 氣車技師考試題目及答案
- 人教版地理八年級(jí)上學(xué)期期末質(zhì)量檢測(cè)(解析版)
- 湖南省婁底市雙峰縣2024-2025學(xué)年八年級(jí)上學(xué)期期末考試地理試題(含答案)
- 《GAT 1049.6-2013公安交通集成指揮平臺(tái)通信協(xié)議 第6部分:交通信息發(fā)布系統(tǒng)》專題研究報(bào)告
- 2026年深圳中考語文高頻考點(diǎn)精練試卷(附答案可下載)
- 2026年大學(xué)大二(機(jī)械設(shè)計(jì)制造及其自動(dòng)化)數(shù)控加工技術(shù)階段測(cè)試題及答案
- 創(chuàng)新科技技術(shù)介紹
- 職業(yè)道德與法治知識(shí)點(diǎn)總結(jié)2025屆中職高考復(fù)習(xí)高教版
- DB37-T 5318-2025 有機(jī)保溫板薄抹灰外墻外保溫系統(tǒng)應(yīng)用技術(shù)標(biāo)準(zhǔn)
- 大模型備案-落實(shí)算法安全主體責(zé)任基本情況
- (高清版)DB36∕T 1919-2023 水質(zhì) 無機(jī)元素的現(xiàn)場(chǎng)快速測(cè)定 便攜式單波長(zhǎng)激發(fā)-能量色散X射線熒光光譜法
- 江蘇省常州市2024-2025學(xué)年七年級(jí)上學(xué)期期末道德與法治試卷(含答案)
- 四川省南充市2024-2025學(xué)年高一上學(xué)期期末質(zhì)量檢測(cè)語文試題(含答案)
- 2024數(shù)控機(jī)床主軸可靠性加速試驗(yàn)技術(shù)規(guī)范
- 甲烷活化機(jī)制研究
- 質(zhì)量信得過班組培訓(xùn)課件
- 材料進(jìn)場(chǎng)檢驗(yàn)記錄表
- DL∕T 1768-2017 旋轉(zhuǎn)電機(jī)預(yù)防性試驗(yàn)規(guī)程
評(píng)論
0/150
提交評(píng)論