北京市西城區(qū)第14中學(xué)2024屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第1頁
北京市西城區(qū)第14中學(xué)2024屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第2頁
北京市西城區(qū)第14中學(xué)2024屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第3頁
北京市西城區(qū)第14中學(xué)2024屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第4頁
北京市西城區(qū)第14中學(xué)2024屆數(shù)學(xué)高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京市西城區(qū)第14中學(xué)2024屆數(shù)學(xué)高二上期末調(diào)研試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.用數(shù)學(xué)歸納法證明“”時(shí),由假設(shè)證明時(shí),不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.2.若數(shù)列1,a,b,c,9是等比數(shù)列,則實(shí)數(shù)b的值為()A.5 B.C.3 D.3或3.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用4.雙曲線C:的右焦點(diǎn)為F,過點(diǎn)F作雙曲線C的兩條漸近線的垂線,垂足分別為H1,H2.若,則雙曲線C的離心率為()A. B.C. D.25.計(jì)算復(fù)數(shù):()A. B.C. D.6.曲線的一個(gè)焦點(diǎn)F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標(biāo)原點(diǎn),若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.7.為了調(diào)查全國人口的壽命,抽查了11個(gè)省(市)的2500名城鎮(zhèn)居民,這2500名城鎮(zhèn)居民的壽命的全體是()A.總體 B.個(gè)體C.樣本 D.樣本容量8.已知點(diǎn)P是圓上一點(diǎn),則點(diǎn)P到直線的距離的最大值為()A.2 B.C. D.9.如圖,過拋物線的焦點(diǎn)的直線交拋物線于點(diǎn)、,交其準(zhǔn)線于點(diǎn),若,且,則的值為()A. B.C. D.10.下列語句為命題的是()A. B.你們好!C.下雨了嗎? D.對(duì)頂角相等11.已知數(shù)列是遞減的等比數(shù)列,的前項(xiàng)和為,若,,則=()A.54 B.36C.27 D.1812.曲線y=x3+11在點(diǎn)P(1,12)處的切線與y軸交點(diǎn)的縱坐標(biāo)是()A.﹣9 B.﹣3C.9 D.15二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為雙曲線的焦點(diǎn),過F的直線l與C的兩條漸近線分別交于A,B兩點(diǎn).若,且的內(nèi)切圓的半徑為,則C的離心率為____________14.定義點(diǎn)到曲線的距離為該點(diǎn)與曲線上所有點(diǎn)之間距離的最小值,則點(diǎn)到曲線距離為___________.15.圓錐曲線有良好的光學(xué)性質(zhì),光線從橢圓的一個(gè)焦點(diǎn)發(fā)出,被橢圓反射后會(huì)經(jīng)過橢圓的另一個(gè)焦點(diǎn)(如左圖);光線從雙曲線的一個(gè)焦點(diǎn)發(fā)出,被雙曲線反射后的反射光線等效于從另一個(gè)焦點(diǎn)射出(如中圖).封閉曲線E(如右圖)是由橢圓C1:+=1和雙曲線C2:-=1在y軸右側(cè)的一部分(實(shí)線)圍成.光線從橢圓C1上一點(diǎn)P0出發(fā),經(jīng)過點(diǎn)F2,然后在曲線E內(nèi)多次反射,反射點(diǎn)依次為P1,P2,P3,P4,…,若P0,P4重合,則光線從P0到P4所經(jīng)過的路程為_________.16.各項(xiàng)均為正數(shù)的等比數(shù)列的前n項(xiàng)和為,滿足,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓經(jīng)過點(diǎn),(1)求橢圓的方程;(2)已知直線的傾斜角為銳角,與圓相切,與橢圓交于、兩點(diǎn),且的面積為,求直線的方程18.(12分)已知數(shù)列的前項(xiàng)和為,且,(1)求的通項(xiàng)公式;(2)求的最小值19.(12分)已知函數(shù)在處的切線與軸平行(1)求的值;(2)判斷在上零點(diǎn)的個(gè)數(shù),并說明理由20.(12分)已知圓,圓,動(dòng)圓與圓外切,且與圓內(nèi)切.(1)求動(dòng)圓圓心的軌跡的方程,并說明軌跡是何種曲線;(2)設(shè)過點(diǎn)的直線與直線交于兩點(diǎn),且滿足的面積是面積的一半,求的面積21.(12分)已知二次曲線的方程:(1)分別求出方程表示橢圓和雙曲線的條件;(2)若雙曲線與直線有公共點(diǎn)且實(shí)軸最長,求雙曲線方程;(3)為正整數(shù),且,是否存在兩條曲線,其交點(diǎn)P與點(diǎn)滿足,若存在,求的值;若不存在,說明理由22.(10分)如圖,菱形的邊長為4,,矩形的面積為8,且平面平面(1)證明:;(2)求C到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】當(dāng)成立,寫出左側(cè)的表達(dá)式,當(dāng)時(shí),寫出對(duì)應(yīng)的關(guān)系式,觀察計(jì)算即可【詳解】從到成立時(shí),左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C2、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項(xiàng)公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C3、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對(duì),由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.4、D【解析】將條件轉(zhuǎn)化為該雙曲線的一條漸近線的傾斜角為,可得,由離心率公式即可得解.【詳解】由題意,(為坐標(biāo)原點(diǎn)),所以該雙曲線的一條漸近線的傾斜角為,所以,即,所以離心率.故選:D.5、D【解析】直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡可得結(jié)論.【詳解】故選:D.6、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A7、C【解析】由樣本的概念即知.【詳解】由題意可知,這2500名城鎮(zhèn)居民的壽命的全體是樣本.8、C【解析】求出圓心到直線的距離,由這個(gè)距離加上半徑即得【詳解】由圓,可得圓心坐標(biāo),半徑,則圓心C到直線的距離為,所以點(diǎn)P到直線l的距離的最大值為.故選:C9、B【解析】分別過點(diǎn)、作準(zhǔn)線的垂線,垂足分別為點(diǎn)、,設(shè),根據(jù)拋物線的定義以及直角三角形的性質(zhì)可求得,結(jié)合已知條件求得,分析出為的中點(diǎn),進(jìn)而可得出,即可得解.【詳解】如圖,分別過點(diǎn)、作準(zhǔn)線的垂線,垂足分別為點(diǎn)、,設(shè),則由己知得,由拋物線的定義得,故,在直角三角形中,,,因?yàn)?,則,從而得,所以,,則為的中點(diǎn),從而.故選:B.10、D【解析】根據(jù)命題的定義判斷即可.【詳解】因?yàn)槟軌蚺袛嗾婕俚恼Z句叫作命題,所以ABC錯(cuò)誤,D正確.故選:D11、C【解析】根據(jù)等比數(shù)列的性質(zhì)及通項(xiàng)公式計(jì)算求解即可.【詳解】由,解得或(舍去),,,故選:C12、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點(diǎn)處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】,作出漸近線圖像,由題可知的內(nèi)切圓圓心在x軸上,過內(nèi)心作OA和AB的垂線,可得幾何關(guān)系,據(jù)此即可求解.【詳解】雙曲線漸近線OA與OB如圖所示,OA與OB關(guān)于x軸對(duì)稱,設(shè)△OAB的內(nèi)切圓圓心為,則M在的平分線上,過點(diǎn)分別作于點(diǎn)于,由,則四邊形為正方形,由焦點(diǎn)到漸近線的距離為得,又,∴,且,∴,∴,則.故答案為:.14、2【解析】設(shè)出曲線上任意一點(diǎn),利用兩點(diǎn)間距離公式表達(dá)出,利用基本不等式求出最小值.【詳解】當(dāng)時(shí),顯然不成立,故,此時(shí),設(shè)曲線任意一點(diǎn),則,其中,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,此時(shí)即為最小值.故答案為:215、【解析】結(jié)合橢圓、雙曲線的定義以及它們的光學(xué)性質(zhì)求得正確答案.【詳解】橢圓;雙曲線,雙曲線和橢圓的焦點(diǎn)重合.根據(jù)雙曲線的定義有,所以①,②,根據(jù)橢圓的定義由,所以路程.故答案為:16、【解析】利用等比數(shù)列的通項(xiàng)公式和前項(xiàng)和公式,即可得到答案.【詳解】由題意各項(xiàng)均為正數(shù)的等比數(shù)列得:,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)將點(diǎn)M、N的坐標(biāo)代入橢圓方程計(jì)算,求出a、b的值即可;(2)設(shè)l的方程為:,,根據(jù)直線與圓的位置關(guān)系可得,直線方程聯(lián)立橢圓方程并消去y,利用韋達(dá)定理表示出,根據(jù)弦長公式求出,進(jìn)而列出關(guān)于k的方程,解之即可.【小問1詳解】橢圓經(jīng)過點(diǎn),則,解得,【小問2詳解】設(shè)l的方程為:與圓相切設(shè)點(diǎn),∴(則Δ>0,,,,,,,,,故,18、(1)(2)【解析】(1)由可求得的值,由可求得數(shù)列的通項(xiàng)公式;(2)求得,利用二次函數(shù)的基本性質(zhì)可求得的最小值.【小問1詳解】解:由題意可得,解得,所以,.當(dāng)時(shí),,當(dāng)時(shí),,也滿足,故對(duì)任意的,.【小問2詳解】解:,所以,當(dāng)或時(shí),取得最小值,且最小值為.19、(1)0(2)f(x)在(0,π)上有且只有一個(gè)零點(diǎn),理由見解析【解析】(1)利用導(dǎo)數(shù)的幾何意義求解;(2)由,可得,令,,,,利用導(dǎo)數(shù)法求解.【小問1詳解】解:,所以k=f′(0)=-a=0,所以a=0;【小問2詳解】由,可得,令,,所以,①當(dāng)時(shí),sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上單調(diào)遞增,又因?yàn)間(0)=0,所以g(x)在上無零點(diǎn);②當(dāng)時(shí),令,所以h′(x)=2cosxex<0,即h(x)在上單調(diào)遞減,又因?yàn)?,h(π)=-eπ-1<0,所以存在,,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減,因?yàn)椋琯(π)=-π<0,所以g(x)在上且只有一個(gè)零點(diǎn);綜上所述:f(x)在(0,π)上有且只有一個(gè)零點(diǎn)20、(1)(2)或【解析】(1)設(shè)圓的半徑為,圓的半徑為,圓的半徑為,由題意,,從而可得,由橢圓的定義即可求解;(2)由題意,直線的斜率存在且不為0,設(shè),,聯(lián)立直線與橢圓方程,利用韋達(dá)定理及點(diǎn)為線段的中點(diǎn),可得,利用弦長公式求出及到直線AB的距離即可得的面積.【小問1詳解】解:圓的圓心,半徑,圓的圓心,半徑,設(shè)圓的半徑為,由題意,,所以,由橢圓的定義可知,動(dòng)圓圓心的軌跡是以,為焦點(diǎn),長軸長為的橢圓,則,所以,所以動(dòng)圓圓心的軌跡的方程為;【小問2詳解】解:由題意,直線的斜率存在且不為0,設(shè),,由,可得,所以①,②,且,即,因?yàn)榈拿娣e是面積的一半,所以點(diǎn)為線段的中點(diǎn),所以,即③,聯(lián)立①②③可得,所以,因?yàn)榈街本€AB的距離,,所以,所以當(dāng)時(shí),,當(dāng)時(shí),.所以的面積為或.21、(1)時(shí),方程表示橢圓,時(shí),方程表示雙曲線;(2);(3)存在,且或或.【解析】(1)當(dāng)且僅當(dāng)分母都為正,且不相等時(shí),方程表示橢圓;當(dāng)且僅當(dāng)分母異號(hào)時(shí),方程表示雙曲線(2)將直線與曲線聯(lián)立化簡得:,利用雙曲線與直線有公共點(diǎn),可確定的范圍,從而可求雙曲線的實(shí)軸,進(jìn)而可得雙曲線方程;(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì),任意兩橢圓之間無公共點(diǎn),任意兩雙曲線之間無公共點(diǎn),從而可求【詳解】(1)當(dāng)且僅當(dāng)時(shí),方程表示橢圓;當(dāng)且僅當(dāng)時(shí),方程表示雙曲線(2)化簡得:△或所以雙曲線的實(shí)軸為,當(dāng)時(shí),雙曲線實(shí)軸最長為此時(shí)雙曲線方程為(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì)任意兩橢圓之間無公共點(diǎn),任意兩雙曲線之間無公共點(diǎn)設(shè),,,2,,,6,7,由橢圓與雙曲線定義及;所以所以這樣的,存在,且或或【點(diǎn)睛】方法點(diǎn)睛:曲線方程的確定可分為兩類:若已知曲線類型,則采用待定系數(shù)法;若曲線類型未知時(shí),則可利用直接法、定義法、相關(guān)點(diǎn)法等求解或者利用分類

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論