版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省延邊市第二中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,過拋物線的焦點(diǎn)的直線與拋物線交于兩點(diǎn),與其準(zhǔn)線交于點(diǎn)(點(diǎn)位于之間)且于點(diǎn)且,則等于()A. B.C. D.2.?dāng)?shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點(diǎn),,若其歐拉線的方程為,則頂點(diǎn)的坐標(biāo)為()A. B.C. D.3.已知直線與直線垂直,則()A. B.C. D.4.雙曲線的虛軸長為()A. B.C.3 D.65.已知雙曲線:的右焦點(diǎn)為,過的直線(為常數(shù))與雙曲線在第一象限交于點(diǎn).若(為原點(diǎn)),則的離心率為()A. B.C. D.56.已知橢圓:的左、右焦點(diǎn)分別為、,為坐標(biāo)原點(diǎn),為橢圓上一點(diǎn).與軸交于一點(diǎn),,則橢圓C的離心率為()A. B.C. D.7.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為A. B.C. D.8.在的展開式中,的系數(shù)為()A. B.5C. D.109.已知橢圓與雙曲線有相同的焦點(diǎn),且它們的離心率之積為1,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.10.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.11.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點(diǎn),為銳角,且,則()A. B.C. D.12.若拋物線的準(zhǔn)線方程是,則拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓C:的左、右焦點(diǎn)分別為,,點(diǎn)A在橢圓上,,直線交橢圓于點(diǎn)B,,則橢圓的離心率為______14.某個(gè)彈簧振子在振動過程中的位移y(單位:mm)與時(shí)間t(單位:s)之間的關(guān)系為,則當(dāng)s時(shí),彈簧振子的瞬時(shí)速度為_________mm/s.15.在數(shù)列中,,,,若數(shù)列是遞減數(shù)列,數(shù)列是遞增數(shù)列,則______16.如圖,在平行六面體中,設(shè),N是的中點(diǎn),則向量_________.(用表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線的左,右焦點(diǎn)為,離心率為.(1)求雙曲線C的漸近線方程;(2)過作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點(diǎn),若,求k的值.18.(12分)如圖,在正四棱錐中,為底面中心,,為中點(diǎn),(1)求證:平面;(2)求:(?。┲本€到平面的距離;(ⅱ)求直線與平面所成角的正弦值19.(12分)設(shè)函數(shù),其中,為自然對數(shù)的底數(shù).(1)討論單調(diào)性;(2)證明:當(dāng)時(shí),.20.(12分)已知二次函數(shù),.(1)若,求函數(shù)的最小值;(2)若,解關(guān)于x的不等式.21.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求的取值范圍;(2)若在上存在極值點(diǎn),證明:.22.(10分)已知橢圓,其焦點(diǎn)為,,離心率為,若點(diǎn)滿足.(1)求橢圓的方程;(2)若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),的重心滿足:,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題可得,然后結(jié)合條件可得,即求.【詳解】設(shè)于點(diǎn),準(zhǔn)線交軸于點(diǎn)G,則,又,∴,又于點(diǎn)且,∴BE∥AD,∴,即,∴,∴等于.故選:B.2、A【解析】設(shè),計(jì)算出重心坐標(biāo)后代入歐拉方程,再求出外心坐標(biāo),根據(jù)外心的性質(zhì)列出關(guān)于的方程,最后聯(lián)立解方程即可.【詳解】設(shè),由重心坐標(biāo)公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點(diǎn)為,,的中垂線方程為,即聯(lián)立,解得的外心為則,整理得:②聯(lián)立①②得:,或,當(dāng),時(shí),重合,舍去頂點(diǎn)的坐標(biāo)是故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)睛:解決本題的關(guān)鍵一是求出外心,二是根據(jù)外心的性質(zhì)列方程.3、D【解析】根據(jù)互相垂直兩直線的斜率關(guān)系進(jìn)行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因?yàn)橹本€與直線垂直,所以,故選:D4、D【解析】根據(jù)題意,由雙曲線的方程求出的值,即可得答案【詳解】因?yàn)椋?,所以雙曲線的虛軸長為.故選:D.5、D【解析】取雙曲線的左焦點(diǎn),連接,計(jì)算可得,即.設(shè),則,,解得:,利用勾股定理計(jì)算可得,即可得出結(jié)果.【詳解】取雙曲線的左焦點(diǎn),連接,,則因?yàn)?,所以,?,.設(shè),則,,解得:.,,..故選:D6、C【解析】由橢圓的性質(zhì)可先求得,故可得,再由橢圓的定義得a,c的關(guān)系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C7、D【解析】解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D8、C【解析】首先寫出展開式的通項(xiàng)公式,然后結(jié)合通項(xiàng)公式確定的系數(shù)即可.【詳解】展開式的通項(xiàng)公式為:,令可得:,則的系數(shù)為:.故選:C.【點(diǎn)睛】二項(xiàng)式定理的核心是通項(xiàng)公式,求解此類問題可以分兩步完成:第一步根據(jù)所給出的條件(特定項(xiàng))和通項(xiàng)公式,建立方程來確定指數(shù)(求解時(shí)要注意二項(xiàng)式系數(shù)中n和r的隱含條件,即n,r均為非負(fù)整數(shù),且n≥r,如常數(shù)項(xiàng)指數(shù)為零、有理項(xiàng)指數(shù)為整數(shù)等);第二步是根據(jù)所求的指數(shù),再求所求解的項(xiàng)9、A【解析】計(jì)算雙曲線的焦點(diǎn)為,離心率,得到橢圓的焦點(diǎn)為,離心率,計(jì)算得到答案.【詳解】雙曲線的焦點(diǎn)為,離心率,故橢圓的焦點(diǎn)為,離心率,即.解得,故橢圓標(biāo)準(zhǔn)方程為:.故選:.【點(diǎn)睛】本題考查了橢圓和雙曲線的離心率,焦點(diǎn),橢圓的標(biāo)準(zhǔn)方程,意在考查學(xué)生的計(jì)算能力.10、B【解析】根據(jù)雙曲線的離心率,求出即可得到結(jié)論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B11、C【解析】根據(jù)角終邊上有一點(diǎn),得到,再根據(jù)為銳角,且,求得,再利用兩角差的正切函數(shù)求解.【詳解】因?yàn)榻墙K邊上有一點(diǎn),所以,又因?yàn)闉殇J角,且,所以,所以,故選:C12、D【解析】根據(jù)拋物線的準(zhǔn)線方程,可直接得出拋物線的焦點(diǎn),進(jìn)而利用待定系數(shù)法求得拋物線的標(biāo)準(zhǔn)方程【詳解】準(zhǔn)線方程為,則說明拋物線的焦點(diǎn)在軸的正半軸則其標(biāo)準(zhǔn)方程可設(shè)為:則準(zhǔn)線方程為:解得:則拋物線的標(biāo)準(zhǔn)方程為:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設(shè)出邊長,找到邊長與之間等量關(guān)系,然后把等量關(guān)系帶入到勾股定理表達(dá)的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設(shè),則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)14、0【解析】根據(jù)題意得,進(jìn)而根據(jù)導(dǎo)數(shù)幾何意義求解時(shí)的導(dǎo)函數(shù)值即可得答案.【詳解】解:因?yàn)?,所以求?dǎo)得,所以根據(jù)導(dǎo)數(shù)的幾何意義得該振子在時(shí)的瞬時(shí)速度為,故答案為:.15、【解析】根據(jù)所給條件可歸納出當(dāng)時(shí),,利用迭代法即可求解.【詳解】因?yàn)椋?,,所以,即,,且是遞減數(shù)列,數(shù)列是遞增數(shù)列或(舍去),,,故可得當(dāng)時(shí),,故答案為:16、【解析】根據(jù)向量的加減法運(yùn)算法則及數(shù)乘運(yùn)算求解即可.【詳解】由向量的減法及加法運(yùn)算可得,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由離心率可得雙曲線的漸近線方程;(2)設(shè),則的中點(diǎn)為,由,可得,然后的方程與雙曲線的漸近線方程聯(lián)立,利用韋達(dá)定理可得答案.【小問1詳解】設(shè),則,又,所以,得,所以雙曲線的漸近線方程為.【小問2詳解】由已知直線的傾斜角不是直角,,設(shè),則的中點(diǎn)為,,由,可知,所以,即,因?yàn)榈姆匠虨?,雙曲線的漸近線方程可寫為,由消去y,得,所以,,所以,因?yàn)?,所以,?18、(1)證明見解析;(2)(i);(ii).【解析】(1)連接,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可證得結(jié)論成立;(2)(i)利用空間向量法可求得直線到平面的距離;(ii)利用空間向量法可求得直線與平面所成角的正弦值.【小問1詳解】證明:連接,則為的中點(diǎn),且,在正四棱錐中,平面,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示空間直角坐標(biāo)系,則、、、、、、、,,設(shè)平面的法向量為,,,則,取,則,因?yàn)?,則,又因?yàn)槠矫?,所以,平?【小問2詳解】解:(i),所以,直線到平面的距離為.(ii),則,因此,直線與平面所成角的正弦值為.19、(1)答案見解析(2)答案見解析【解析】(1)求導(dǎo)數(shù),分和,兩種情況討論,即可求得的單調(diào)性;(2)令,利用導(dǎo)數(shù)求得單調(diào)遞增,結(jié)合,得到,進(jìn)而證得.【詳解】(1)由函數(shù),可得,當(dāng)時(shí),,在內(nèi)單調(diào)遞減;當(dāng)時(shí),由有,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.(2)證明:令,則,當(dāng)時(shí),,單調(diào)遞增,因?yàn)椋?,即,?dāng)時(shí),可得,即【點(diǎn)睛】利用導(dǎo)數(shù)證明不等式常見類型及解題策略(1)構(gòu)造差函數(shù).根據(jù)差函數(shù)導(dǎo)函數(shù)符號,確定差函數(shù)單調(diào)性,利用單調(diào)性得不等量關(guān)系,進(jìn)而證明不等式.(2)根據(jù)條件,尋找目標(biāo)函數(shù).一般思路為利用條件將求和問題轉(zhuǎn)化為對應(yīng)項(xiàng)之間大小關(guān)系,或利用放縮、等量代換將多元函數(shù)轉(zhuǎn)化為一元函數(shù).20、(1)(2)當(dāng)時(shí),不等式的解集為當(dāng)時(shí),不等式的解集為當(dāng)時(shí),不等式的解集為【解析】(1)帶入,將化解為,再利用基本不等式求最值即可;(2)將不等式移項(xiàng)整理為,再對a分類討論,比較兩根的大小,即可求得解集.【小問1詳解】當(dāng)a=3時(shí),函數(shù)可整理為,因?yàn)椋岳没静坏仁?,?dāng)且僅當(dāng),即時(shí),y取到最小值.所以,當(dāng)時(shí),函數(shù)的最小值為.【小問2詳解】將不等式整理為,令,即,解得兩根為與1,因?yàn)?,?dāng)時(shí),即時(shí),此時(shí)的解集為;當(dāng)時(shí),即時(shí),此時(shí)的解集為;當(dāng)時(shí),即時(shí),此時(shí)的解集為.綜上所述,當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為.21、(1)(2)證明見解析【解析】(1)由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,分類討論,再次利用導(dǎo)數(shù)研究函數(shù)的最值即可;(2)由(1)可知,在存在極值點(diǎn),則且,求得,再兩次求導(dǎo)即可得結(jié)論.【小問1詳解】由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,設(shè),當(dāng)時(shí),由,得,在,上為增函數(shù),則,在,上恒成立,滿足命題,當(dāng)時(shí),由,得,在上為減函數(shù),,時(shí),,即,不滿足恒成立,不成立,綜上:的取值范圍為.小問2詳解】證明:由(1)可知,在存在極值點(diǎn),則且即:要證只需證即證又由(1)可知在上為增函數(shù),且,成立.要證只需證即證:設(shè)則即在上增函數(shù)在為增函數(shù)成立.綜上,成立.22、(1)(2)【解析】(1)運(yùn)用橢圓的離心率公式,結(jié)合橢圓的定義可得在橢圓上,代入橢圓方程,求出,,即可求橢圓的方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,利用根與系數(shù)之間的關(guān)系、以及向量數(shù)量積的坐標(biāo)表示進(jìn)行求解即可.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GA 1408-2017 警帽 禮儀大檐帽》專題研究報(bào)告
- 《GA 758-2008 9mm警用轉(zhuǎn)輪手槍》專題研究報(bào)告
- 中學(xué)社團(tuán)指導(dǎo)教師職責(zé)制度
- 養(yǎng)老院入住老人遺物保管與處理制度
- 企業(yè)內(nèi)部培訓(xùn)與發(fā)展規(guī)劃制度
- 交通管制與疏導(dǎo)方案制度
- 2026湖北省定向重慶大學(xué)選調(diào)生招錄備考題庫附答案
- 2026湖南郴州莽山旅游開發(fā)有限責(zé)任公司面向社會招聘40人備考題庫附答案
- 2026福建泉州石獅市鳳里街道中心幼兒園春季招聘備考題庫附答案
- 2026西藏自治區(qū)定向選調(diào)生招錄(70人)參考題庫附答案
- 旅居養(yǎng)老可行性方案
- 燈謎大全及答案1000個(gè)
- 老年健康與醫(yī)養(yǎng)結(jié)合服務(wù)管理
- 中國焦慮障礙防治指南
- 1到六年級古詩全部打印
- 心包積液及心包填塞
- GB/T 40222-2021智能水電廠技術(shù)導(dǎo)則
- 兩片罐生產(chǎn)工藝流程XXXX1226
- 第十章-孤獨(dú)癥及其遺傳學(xué)研究課件
- 人教版四年級上冊語文期末試卷(完美版)
- 工藝管道儀表流程圖PID基礎(chǔ)知識入門級培訓(xùn)課件
評論
0/150
提交評論