版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
重慶市六校聯(lián)考2023年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是等差數(shù)列的前項和,,,則的最小值為()A. B.C. D.2.由于受疫情的影響,學(xué)校停課,同學(xué)們通過三種方式在家自主學(xué)習(xí),現(xiàn)學(xué)校想了解同學(xué)們對假期學(xué)習(xí)方式的滿意程度,收集如圖1所示的數(shù)據(jù);教務(wù)處通過分層抽樣的方法抽取4%的同學(xué)進(jìn)行滿意度調(diào)查,得到的數(shù)據(jù)如圖2.下列說法錯誤的是()A.樣本容量為240B.若,則本次自主學(xué)習(xí)學(xué)生的滿意度不低于四成C.總體中對方式二滿意學(xué)生約為300人D.樣本中對方式一滿意的學(xué)生為24人3.已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點,以這四個焦點為頂點的四邊形的面積為16,則橢圓的方程為A. B.C. D.4.拋物線的準(zhǔn)線方程是,則a的值為()A.4 B.C. D.5.已知函數(shù),當(dāng)時,函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.6.若曲線與曲線在公共點處有公共切線,則實數(shù)()A. B.C. D.7.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()A.2 B.6C.4 D.128.已知正三棱柱中,,點為中點,則異面直線與所成角的余弦值為()A. B.C. D.9.已知向量,滿足條件,則的值為()A.1 B.C.2 D.10.若定義在R上的函數(shù)滿足,則不等式的解集為()A. B.C. D.11.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.12.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進(jìn)微積分概念.在研究切線時認(rèn)識到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)的導(dǎo)函數(shù),若,且對,,且總有,則下列選項正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程為_______.14.已知直線與拋物線相交于A,B兩點,且,則拋物線C的準(zhǔn)線方程為___________.15.設(shè)等差數(shù)列的前項和為,且,,則__________.16.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個點,F(xiàn)1和F2分別是C1的左右焦點,也是C2的左右焦點,并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點的坐標(biāo).18.(12分)已知數(shù)列的前項和為,已知,且當(dāng),時,(1)證明數(shù)列是等比數(shù)列;(2)設(shè),求數(shù)列的前項和19.(12分)已知直線經(jīng)過拋物線的焦點,且與拋物線相交于兩點.(1)若直線的斜率為1,求;(2)若,求直線的方程.20.(12分)已知的內(nèi)角A,B,C所對的邊分別為a,b,c,且(1)求;(2)若,求的面積的最大值21.(12分)已知點關(guān)于直線的對稱點為Q,以Q為圓心的圓與直線相交于A,B兩點,且(1)求圓Q的方程;(2)過坐標(biāo)原點O任作一直線交圓Q于C,D兩點,求證:為定值22.(10分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù),可得,再根據(jù),得,從而可得出答案.【詳解】解:因為,所以,又,所以,所以的最小值為.故選:C.2、B【解析】利用扇形統(tǒng)計圖和條形統(tǒng)計圖可求出結(jié)果【詳解】選項A,樣本容量為,該選項正確;選項B,根據(jù)題意得自主學(xué)習(xí)的滿意率,錯誤;選項C,樣本可以估計總體,但會有一定的誤差,總體中對方式二滿意人數(shù)約為,該選項正確;選項D,樣本中對方式一滿意人數(shù)為,該選項正確.故選:B【點睛】本題主要考查了命題真假的判斷,考查扇形統(tǒng)計圖和條形統(tǒng)計圖等基礎(chǔ)知識,考查運算求解能力,屬于中檔題3、D【解析】由題意,雙曲線的漸近線方程為,∵以這四個交點為頂點的四邊形為正方形,其面積為16,故邊長為4,∴(2,2)在橢圓C:上,∴,∵,∴,∴,∴∴橢圓方程為:.故選D.考點:橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì);雙曲線的幾何性質(zhì).4、C【解析】先求得拋物線的標(biāo)準(zhǔn)方程,可得其準(zhǔn)線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標(biāo)準(zhǔn)方程為,準(zhǔn)線方程為,又準(zhǔn)線方程是,所以,所以.故選:C5、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設(shè),則,又設(shè),則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),簡單的線性規(guī)劃6、A【解析】設(shè)公共點為,根據(jù)導(dǎo)數(shù)的幾何意義可得出關(guān)于、的方程組,即可解得實數(shù)、的值.【詳解】設(shè)公共點為,的導(dǎo)數(shù)為,曲線在處的切線斜率,的導(dǎo)數(shù)為,曲線在處的切線斜率,因為兩曲線在公共點處有公共切線,所以,且,,所以,即解得,所以,解得,故選:A7、C【解析】根據(jù)題設(shè)條件求出橢圓的長半軸,再借助橢圓定義即可作答.【詳解】由橢圓+y2=1知,該橢圓的長半軸,A是橢圓一個焦點,設(shè)另一焦點為,而點在BC邊上,點B,C又在橢圓上,由橢圓定義得,所以的周長故選:C8、A【解析】根據(jù)異面直線所成角的定義,取中點為,則為異面直線和所成角或其補(bǔ)角,再解三角形即可求出【詳解】如圖所示:設(shè)中點為,則在三角形中,為中點,為中位線,所以有,,所以為異面直線和所成角或其補(bǔ)角,在三角形中,,所以由余弦定理有,故選:A.9、A【解析】先求出坐標(biāo),進(jìn)而根據(jù)空間向量垂直的坐標(biāo)運算求得答案.【詳解】因為,所以,解得.故選:A.10、B【解析】構(gòu)造函數(shù),根據(jù)題意,求得其單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】構(gòu)造函數(shù),則,故在上單調(diào)遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點睛】本題考察利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,以及利用函數(shù)單調(diào)性求解不等式,解決本題的關(guān)鍵是根據(jù)題意構(gòu)造函數(shù),屬中檔題.11、B【解析】根據(jù)橢圓中之間的關(guān)系,結(jié)合橢圓焦距的定義進(jìn)行求解即可.【詳解】由橢圓的標(biāo)準(zhǔn)方程可知:,則焦距為,故選:B.12、D【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進(jìn)而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點睛】本題考查以數(shù)學(xué)文化為背景,導(dǎo)數(shù)的幾何意義,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線的標(biāo)準(zhǔn)方程為x2=y,得拋物線是焦點在y軸正半軸的拋物線,2p=1,∴其準(zhǔn)線方程是y=,故答案為14、【解析】將直線與拋物線聯(lián)立結(jié)合拋物線的定義即可求解.【詳解】解:直線與拋物線相交于A,B兩點設(shè),直線與拋物線聯(lián)立得:所以所以即解得:所以拋物線C的準(zhǔn)線方程為:.故答案為:.15、【解析】根據(jù),利用等差數(shù)列前項和公式,列方程求出,再由,能求出【詳解】等差數(shù)列的前項和為,且,,,解得,,,解得,故答案為:1016、【解析】先根據(jù)橢圓的方程求得焦點坐標(biāo),然后根據(jù)為正六邊形求得點的坐標(biāo),即點在雙曲線上,然后解出方程即可【詳解】設(shè)雙曲線的方程為:根據(jù)橢圓的方程可得:又為正六邊形,則點的坐標(biāo)為:則點在雙曲線上,可得:又解得:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】分析:(1)先根據(jù)求出k的值,再利用平行線間的距離公式求與的距離.(2)先根據(jù)求出k的值,再解方程組得與的交點的坐標(biāo).詳解:(1)若,則由,即,解得或.當(dāng)時,直線:,直線:,兩直線重合,不符合,故舍去;當(dāng)時,直線:,直線:,所以.(2)若,則由,得.所以兩直線方程為:,:,聯(lián)立方程組,解得,所以與的交點的坐標(biāo)為.點睛:(1)本題主要考查直線的位置關(guān)系和距離的計算,意在考查學(xué)生對這些知識的掌握水平和計算能力.(2)直線與直線平行,則且兩直線不重合.直線與直線垂直,則.18、(1)證明見解析;(2).【解析】(1)消去,只保留數(shù)列的遞推關(guān)系,根據(jù)題干提示來證明,注意證明首項不是零;(2)利用裂項求和來解決.【小問1詳解】證明:由題意,當(dāng)時,即,,整理,得,,,,數(shù)列是以2為首項,2為公比的等比數(shù)列【小問2詳解】解:由(1)知,,則,,,,,各項相加,可得,當(dāng)n=1成立,故19、(1)8(2)【解析】(1)設(shè),由,進(jìn)而結(jié)合拋物線的定義,將點到焦點的距離轉(zhuǎn)化為到準(zhǔn)線的距離,最后求得答案;(2)由,所以,設(shè)出直線方程并代入拋物線方程,進(jìn)而結(jié)合根與系數(shù)的關(guān)系求得答案.【小問1詳解】設(shè),拋物線的準(zhǔn)線方程為:,因為,由拋物線定義可知,.直線,代入拋物線方程化簡得:,則,所以.【小問2詳解】設(shè),代入拋物線方程化簡得:,所以,因為,所以,于是則直線的方程為:.20、(1)(2)【解析】(1)由正弦定理將邊化為角,結(jié)合三角函數(shù)的兩角和的正弦公式,可求得答案;(2)由余弦定理結(jié)合基本不等式可求得,再利用三角形面積公式求得答案.【小問1詳解】由正弦定理及,得,∵∴,∵,∴【小問2詳解】由余弦定理,∴,即,當(dāng)且僅當(dāng)時取等號,∴,當(dāng)且僅當(dāng)時等號成立,∴的面積的最大值為21、(1)(2)證明見解析【解析】(1)先求出點坐標(biāo),然后根據(jù)圓心到直線的距離公式及的值求出半徑即可求得圓的方程.(2)設(shè)出直線方程,聯(lián)立圓和直線方程利用韋達(dá)定理來求解.【小問1詳解】解:點關(guān)于直線的對稱點Q為由Q到直線的距離,所以所以圓的方程為【小問2詳解】當(dāng)直線CD斜率不存在時,,所以.當(dāng)直線CD斜率存在時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- CCAA - 環(huán)境管理體系基礎(chǔ)摸底考試二答案及解析 - 詳解版(65題)
- 山西省陽泉市盂縣2025-2026學(xué)年七年級上學(xué)期期末生物學(xué)試題(無答案)
- 2025-2026學(xué)年湖南省長沙市高三第一次模擬考試試卷數(shù)學(xué)試題(人教A版)(原卷版)
- 養(yǎng)老院入住老人法律權(quán)益保護(hù)制度
- 老年終末期尿失禁的護(hù)理干預(yù)方案循證推廣
- 皮具制作工崗前技術(shù)突破考核試卷含答案
- 我國上市公司社會責(zé)任信息披露的價值相關(guān)性探究:基于理論、現(xiàn)狀與實踐的多維度分析
- 我國上市公司獨立監(jiān)事制度的困境與突破:基于公司治理視角的深度剖析
- 保健調(diào)理師崗前跨界整合考核試卷含答案
- 我國上市公司內(nèi)部控制自我評價:現(xiàn)狀、挑戰(zhàn)與優(yōu)化路徑研究
- (一模)烏魯木齊地區(qū)2026年高三年級第一次質(zhì)量監(jiān)測物理試卷(含答案)
- 江蘇省南通市如皋市創(chuàng)新班2025-2026學(xué)年高一上學(xué)期期末數(shù)學(xué)試題+答案
- 2026年年長租公寓市場分析
- 生態(tài)環(huán)境監(jiān)測數(shù)據(jù)分析報告
- 浙江省杭州市蕭山區(qū)2024-2025學(xué)年六年級上學(xué)期語文期末試卷(含答案)
- 學(xué)堂在線 雨課堂 學(xué)堂云 實繩結(jié)技術(shù) 章節(jié)測試答案
- 屋頂光伏安全專項施工方案
- 醫(yī)療器械拓展性臨床試驗管理規(guī)定(試行)YY/T-0292.1-2020《醫(yī)用診斷X射線輻射防護(hù)器具》
- 《中國古代文學(xué)通識讀本》pdf
- 罐區(qū)加溫操作規(guī)程
- 國有企業(yè)干部選拔任用工作系列表格優(yōu)質(zhì)資料
評論
0/150
提交評論