版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省溫州樹人中學(xué)2024屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,為雙曲線的左,右頂點,點P在雙曲線C上,為等腰三角形,且頂角為,則雙曲線C的離心率為()A. B.C.2 D.2.已知是函數(shù)的導(dǎo)函數(shù),則()A. B.C. D.3.一動圓與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,則動圓圓心軌跡為()A.圓 B.橢圓C.雙曲線的一支 D.拋物線4.設(shè),,若,其中是自然對數(shù)底,則()A. B.C. D.5.已知拋物線:的焦點為,為上一點且在第一象限,以為圓心,為半徑的圓交的準(zhǔn)線于,兩點,且,,三點共線,則()A.2 B.4C.6 D.86.函數(shù)在上單調(diào)遞增,則k的取值范圍是()A B.C. D.7.已知直線和互相垂直,則實數(shù)的值為()A. B.C.或 D.8.如果雙曲線的一條漸近線方程為,且經(jīng)過點,則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.9.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國古代聞名中外的“中國剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.1610.在數(shù)列中,若,則稱為“等方差數(shù)列”,下列對“等方差數(shù)列”的判斷,其中不正確的為()A.若是等方差數(shù)列,則是等差數(shù)列 B.若是等方差數(shù)列,則是等方差數(shù)列C.是等方差數(shù)列 D.若是等方差數(shù)列,則是等方差數(shù)列11.函數(shù)圖象如圖所示,則的解析式可以為A. B.C. D.12.函數(shù)在區(qū)間上平均變化率等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列則是這個數(shù)列的第________項.14.曲線的一條切線的斜率為,該切線的方程為________.15.若正數(shù)x、y滿足,則的最小值等于________.16.雙曲線的右焦點到C的漸近線的距離為,則C漸近線方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p:函數(shù)有零點;命題,(1)若命題p,q均為真命題,求實數(shù)a的取值范圍;(2)若為真命題,為假命題,求實數(shù)a的取值范圍18.(12分)如圖,四棱錐P—ABCD中,底面ABCD是邊長為的正方形E,F(xiàn)分別為PC,BD的中點,側(cè)面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求證:EF//平面PAD;(Ⅱ)求三棱錐C—PBD的體積.19.(12分)已知集合,.若,且“”是“”的充分不必要條件,求實數(shù)a的取值范圍20.(12分)已知數(shù)列的前項和滿足(1)證明:數(shù)列為等比數(shù)列;(2)若數(shù)列為等差數(shù)列,且,,求數(shù)列的前項和21.(12分)已知橢圓與雙曲線有相同的焦點,且的短軸長為(1)求的方程;(2)若直線與交于P,Q兩點,,且的面積為,求k22.(10分)已知拋物線的準(zhǔn)線方程是.(Ⅰ)求拋物線的方程;(Ⅱ)設(shè)直線與拋物線相交于,兩點,為坐標(biāo)原點,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)給定條件求出點P的坐標(biāo),再代入雙曲線方程計算作答.【詳解】由雙曲線對稱性不妨令點P在第一象限,過P作軸于B,如圖,因為等腰三角形,且頂角為,則有,,有,于是得,即點,因此,,解得,所以雙曲線C的離心率為.故選:A2、B【解析】求出,代值計算可得的值.【詳解】因為,則,因此,.故選:B.3、C【解析】設(shè)動圓圓心,與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,列出幾何關(guān)系式,化簡,再根據(jù)圓錐曲線的定義,可得到動圓圓心軌跡.【詳解】設(shè)動圓圓心,半徑為,圓x2+y2=1的圓心為,半徑為,圓x2+y2﹣8x+12=0,得,則圓心,半徑為,根據(jù)圓與圓相切,則,,兩式相減得,根據(jù)定義可得動圓圓心軌跡為雙曲線的一支.故選:C【點睛】本題考查了兩圓的位置關(guān)系,圓錐曲線的定義,屬于基礎(chǔ)題.4、A【解析】利用函數(shù)的單調(diào)性可得正確的選項.【詳解】令,因為均為,故為上的增函數(shù),由可得,故,故選:A.5、B【解析】根據(jù),,三點共線,結(jié)合點到準(zhǔn)線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點共線,∴是圓的直徑,∴,軸,又為的中點,且點到準(zhǔn)線的距離為2,∴,由拋物線的定義可得,故選:B.6、A【解析】對函數(shù)求導(dǎo),由于函數(shù)在給定區(qū)間上單調(diào)遞增,故恒成立.【詳解】由題意可得,,,,.故選:A7、B【解析】由兩直線垂直可得出關(guān)于實數(shù)的等式,求解即可.【詳解】由已知可得,解得.故選:B.8、D【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,然后將點代入,進而求得答案.【詳解】因為雙曲線的一條漸近線方程為,所以設(shè)雙曲線方程為,將代入得:,即雙曲線方程為.故選:D.9、C【解析】根據(jù)“中國剩余定理”,進而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個判斷框,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)為2.輸出的i值為13.故選:C.10、B【解析】根據(jù)等方差數(shù)列的定義逐一進行判斷即可【詳解】選項A中,符合等差數(shù)列的定義,所以是等差數(shù)列,A正確;選項B中,不是常數(shù),所以不是等方差數(shù)列,選項B錯誤;選項C中,,所以是等方差數(shù)列,C正確;選項D中,所以是等方差數(shù)列,D正確故選:B11、A【解析】利用排除法:對于B,令得,,即有兩個零點,不符合題意;對于C,當(dāng)時,,當(dāng)且僅當(dāng)時等號成立,即函數(shù)在區(qū)間上存在最大值,不符合題意;對于D,的定義域為,不符合題意;本題選擇A選項.點睛:函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項12、C【解析】根據(jù)平均變化率的定義算出答案即可.【詳解】函數(shù)在區(qū)間上的平均變化率等于故選:C二、填空題:本題共4小題,每小題5分,共20分。13、12【解析】根據(jù)被開方數(shù)的特點求出數(shù)列的通項公式,最后利用通項公式進行求解即可.【詳解】數(shù)列中每一項被開方數(shù)分別為:6,10,14,18,22,…,因此這些被開方數(shù)是以6為首項,4為公差的等差數(shù)列,設(shè)該等差數(shù)列為,其通項公式為:,設(shè)數(shù)列為,所以,于是有,故答案為:14、【解析】使用導(dǎo)數(shù)運算公式求得切點處的導(dǎo)數(shù)值,并根據(jù)導(dǎo)數(shù)的幾何意義等于切線斜率求得切點的橫坐標(biāo),進而得到切點坐標(biāo),然后利用點斜式求出切線方程即可.【詳解】的導(dǎo)數(shù)為,設(shè)切點為,可得,解得,即有切點,則切線的方程為,即.故答案為:.【點睛】本題考查導(dǎo)數(shù)的加法運算,導(dǎo)數(shù)的幾何意義,和求切線方程,難度不大,關(guān)鍵是正確的使用導(dǎo)數(shù)運算公式求得切點處的導(dǎo)數(shù)值,15、9【解析】把要求的式子變形為,利用基本不等式即可得結(jié)果.【詳解】因為,所以,當(dāng)且僅當(dāng)時取等號,故答案為.【點睛】本題主要考查利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).16、【解析】根據(jù)給定條件求出雙曲線漸近線,再用點到直線的距離公式計算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)二次函數(shù)的性質(zhì)求p為真時a的取值范圍,根據(jù)的性質(zhì)判斷與有交點求q為真時a的取值范圍,進而求p,q均為真時a的取值范圍.(2)根據(jù)復(fù)合命題的真假可得p,q一真一假,討論p、q的真假分別求a的取值范圍,最后取并集即可.【小問1詳解】若p為真,,解得或,所以若q為真,因為在上為增函數(shù),所以,故,所以若p,q均為真命題,a的取值范圍為【小問2詳解】由題設(shè),易知:p,q兩命題一真一假當(dāng)p真q假時,p為真,則或,q為假,則或,此時a的取值范圍為;當(dāng)p假q真時,p為假,則,q為真,則,此時a的取值范圍為綜上,實數(shù)a的取值范圍為.18、(1)見解析(2)【解析】本試題主要是考查了線面平行的判定和三棱錐體積的求解的綜合問題.培養(yǎng)了同學(xué)們的推理論證能力和計算能力(1)根據(jù)已知的條件關(guān)鍵是分析出EF//PA,利用線面平行判定定理得到(2)根據(jù)上一問中的結(jié)論可知PM⊥平面ABCD.然后利用轉(zhuǎn)換頂點的思想求解棱錐的體積解:(Ⅰ)證明:連接AC,則F是AC的中點,E為PC的中點,故在CPA中,EF//PA,且PA平面PAD,EF平面PAD,∴EF//平面PAD(Ⅱ)取AD的中點M,連接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.在直角PAM中,求得PM=,∴PM=19、【解析】由題設(shè)A是的真子集,結(jié)合已知集合的描述列不等式求a的范圍.【詳解】由“”是“”的充分不必要條件,即A是的真子集,又,,所以,可得,則實數(shù)a的取值范圍為20、(1)證明見解析(2)【解析】(1)由與的關(guān)系,利用等比數(shù)列的定義證明即可;(2)由(1)求出,再利用裂項相消法求解即可【小問1詳解】當(dāng)時,,,當(dāng)時,,,,數(shù)列是以為首項、以為公比的等比數(shù)列【小問2詳解】由(1)得,,即,,設(shè)等差數(shù)列的公差為,則,,,,,21、(1)(2)或k=1.【解析】(1)根據(jù)題意求得雙曲線的焦點即知橢圓焦點,結(jié)合橢圓短軸長,可求得橢圓標(biāo)準(zhǔn)方程;(2)將直線方程和橢圓方程聯(lián)立,整理得,從而得到根與系數(shù)的關(guān)系式,然后求出弦長以及到直線PQ的距離,進而表示出,由題意得關(guān)于k的方程,解得答案.【小問1詳解】雙曲線即,故雙曲線交點坐標(biāo)為,由此可知橢圓焦點也為,又的短軸長為,故,所以,故橢圓的方程為;【小問2詳解】聯(lián)立,整理得:,其,設(shè),則,所以=,點到直線PQ的距離為,所以=,又的面積為,則=,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB41∕T 2055-2020 大蒜網(wǎng)絡(luò)銷售服務(wù)規(guī)范
- 天津市河西區(qū)2024-2025學(xué)年八年級上學(xué)期期末地理試題(含答案)
- 輔警的法制教育培訓(xùn)課件
- 景區(qū)六員一體培訓(xùn)課件
- 麻醉護理學(xué)課件資料
- 妊娠劇吐急診護理的家屬教育
- 2026年深圳中考語文臨考沖刺押題試卷(附答案可下載)
- 2026年深圳中考物理核心考點密押試卷(附答案可下載)
- 廣東省廣州市花都區(qū)2025年九年級上學(xué)期期末考試物理試題附答案
- 中考道法題目及答案
- 心力衰竭藥物治療的經(jīng)濟評估與成本效益分析
- 道路綠化養(yǎng)護投標(biāo)方案(技術(shù)方案)
- QA出貨檢驗日報表
- 校服采購?fù)稑?biāo)方案
- 中外建筑史課件
- 三年級小學(xué)英語閱讀理解
- 母嬰保健-助產(chǎn)技術(shù)理論考核試題題庫及答案
- dd5e人物卡可填充格式角色卡夜版
- ??怂箍禉C器操作說明書
- GB/T 6003.1-1997金屬絲編織網(wǎng)試驗篩
- GB/T 24207-2009洗油酚含量的測定方法
評論
0/150
提交評論