黑龍江省哈爾濱市風(fēng)華中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第1頁
黑龍江省哈爾濱市風(fēng)華中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第2頁
黑龍江省哈爾濱市風(fēng)華中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第3頁
黑龍江省哈爾濱市風(fēng)華中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第4頁
黑龍江省哈爾濱市風(fēng)華中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省哈爾濱市風(fēng)華中學(xué)2024屆中考數(shù)學(xué)四模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.比較4,,的大小,正確的是()A.4<< B.4<<C.<4< D.<<42.下列天氣預(yù)報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.3.如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點D,則∠CBD的度數(shù)為()A.30° B.45° C.50° D.75°4.在同一直角坐標系中,函數(shù)y=kx-k與(k≠0)的圖象大致是()A. B.C. D.5.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.6.下列實數(shù)中,有理數(shù)是()A. B. C.π D.7.等腰三角形底角與頂角之間的函數(shù)關(guān)系是()A.正比例函數(shù) B.一次函數(shù) C.反比例函數(shù) D.二次函數(shù)8.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對折后,點A恰好落在BC上的點D處,點CE=1,AC=4,則下列結(jié)論一定正確的個數(shù)是()①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE與△BDF的周長相等.A.1個 B.2個 C.3個 D.4個9.在實數(shù),,,中,其中最小的實數(shù)是()A. B. C. D.10.下列圖形中,是軸對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.點(-1,a)、(-2,b)是拋物線上的兩個點,那么a和b的大小關(guān)系是a_______b(填“>”或“<”或“=”).12.如圖所示,△ABC的頂點是正方形網(wǎng)格的格點,則sinA的值為____.13.我們知道方程組的解是,現(xiàn)給出另一個方程組,它的解是____.14.“復(fù)興號”是我國具有完全自主知識產(chǎn)權(quán)、達到世界先進水平的動車組列車.“復(fù)興號”的速度比原來列車的速度每小時快50千米,提速后從北京到上海運行時間縮短了30分鐘.已知從北京到上海全程約1320千米,求“復(fù)興號”的速度.設(shè)“復(fù)興號”的速度為x千米/時,依題意,可列方程為__.15.計算:()﹣1﹣(5﹣π)0=_____.16.已知關(guān)于x的方程x2﹣2x﹣m=0沒有實數(shù)根,那么m的取值范圍是_____.17.方程的兩個根為、,則的值等于______.三、解答題(共7小題,滿分69分)18.(10分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(m,n)(m<0,n>0),E點在邊BC上,F(xiàn)點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線y=k(1)若m=-8,n=4,直接寫出E、F的坐標;(2)若直線EF的解析式為y=3(3)若雙曲線y=k19.(5分)正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.問題出現(xiàn):(1)當(dāng)點P在線段AB上時,如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為;題探究:(2)①當(dāng)點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為;②當(dāng)點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.20.(8分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當(dāng)F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結(jié)果保留根號).21.(10分)某同學(xué)報名參加學(xué)校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).(1)該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率P為;(2)該同學(xué)從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;(3)該同學(xué)從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.22.(10分)先化簡,再在1,2,3中選取一個適當(dāng)?shù)臄?shù)代入求值.23.(12分)如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點E.(1)求證:AE=CE;(2)若tanD=3,求AB的長.24.(14分)某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學(xué)生必選且只能選一項,現(xiàn)隨機抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.請結(jié)合以上信息解答下列問題:m=;請補全上面的條形統(tǒng)計圖;在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為;已知該校共有1200名學(xué)生,請你估計該校約有名學(xué)生最喜愛足球活動.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】

根據(jù)4=<且4=>進行比較【題目詳解】解:易得:4=<且4=>,所以<4<故選C.【題目點撥】本題主要考查開平方開立方運算。2、A【解題分析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【題目點撥】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.3、B【解題分析】試題解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分線交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故選B.4、D【解題分析】

根據(jù)k值的正負性分別判斷一次函數(shù)y=kx-k與反比例函數(shù)(k≠0)所經(jīng)過象限,即可得出答案.【題目詳解】解:有兩種情況,當(dāng)k>0是時,一次函數(shù)y=kx-k的圖象經(jīng)過一、三、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過一、三象限;當(dāng)k<0時,一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過二、四象限;根據(jù)選項可知,D選項滿足條件.故選D.【題目點撥】本題考查了一次函數(shù)、反比例函數(shù)的圖象.正確這兩種圖象所經(jīng)過的象限是解題的關(guān)鍵.5、A【解題分析】∵∠AED=∠B,∠A=∠A

∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.6、B【解題分析】

實數(shù)分為有理數(shù),無理數(shù),有理數(shù)有分數(shù)、整數(shù),無理數(shù)有根式下不能開方的,等,很容易選擇.【題目詳解】A、二次根2不能正好開方,即為無理數(shù),故本選項錯誤,

B、無限循環(huán)小數(shù)為有理數(shù),符合;

C、為無理數(shù),故本選項錯誤;

D、不能正好開方,即為無理數(shù),故本選項錯誤;故選B.【題目點撥】本題考查的知識點是實數(shù)范圍內(nèi)的有理數(shù)的判斷,解題關(guān)鍵是從實際出發(fā)有理數(shù)有分數(shù),自然數(shù)等,無理數(shù)有、根式下開不盡的從而得到了答案.7、B【解題分析】

根據(jù)一次函數(shù)的定義,可得答案.【題目詳解】設(shè)等腰三角形的底角為y,頂角為x,由題意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角與頂角之間的函數(shù)關(guān)系是一次函數(shù)關(guān)系,故選B.【題目點撥】本題考查了實際問題與一次函數(shù),根據(jù)題意正確列出函數(shù)關(guān)系式是解題的關(guān)鍵.8、D【解題分析】等腰直角三角形紙片ABC中,∠C=90°,∴∠A=∠B=45°,由折疊可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正確;由折疊可得,DE=AE=3,∴CD=,∴BD=BC﹣DC=4﹣>1,∴BD>CE,故②正確;∵BC=4,CD=4,∴BC=CD,故③正確;∵AC=BC=4,∠C=90°,∴AB=4,∵△DCE的周長=1+3+2=4+2,由折疊可得,DF=AF,∴△BDF的周長=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,∴△DCE與△BDF的周長相等,故④正確;故選D.點睛:本題主要考查了折疊問題,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.9、B【解題分析】

由正數(shù)大于一切負數(shù),負數(shù)小于0,正數(shù)大于0,兩個負數(shù)絕對值大的反而小,把這四個數(shù)從小到大排列,即可求解.【題目詳解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的實數(shù)為-2;

故選:B.【題目點撥】本題考查了實數(shù)的大小比較,關(guān)鍵是掌握:正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù)絕對值大的反而?。?0、B【解題分析】分析:根據(jù)軸對稱圖形的概念求解.詳解:A、不是軸對稱圖形,故此選項不合題意;B、是軸對稱圖形,故此選項符合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不合題意;故選B.點睛:本題考查了軸對稱圖形,軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.二、填空題(共7小題,每小題3分,滿分21分)11、<【解題分析】把點(-1,a)、(-2,b)分別代入拋物線,則有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案為<.12、.【解題分析】

解:連接CE,∵根據(jù)圖形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案為.考點:勾股定理;三角形的面積;銳角三角函數(shù)的定義.13、【解題分析】

觀察兩個方程組的形式與聯(lián)系,可得第二個方程組中,解之即可.【題目詳解】解:由題意得,解得.故答案為:.【題目點撥】本題考查了二元一次方程組的解,用整體代入法解決這種問題比較方便.14、【解題分析】

設(shè)“復(fù)興號”的速度為x千米/時,則原來列車的速度為(x-50)千米/時,根據(jù)提速后從北京到上海運行時間縮短了30分鐘列出方程即可.【題目詳解】設(shè)“復(fù)興號”的速度為x千米/時,則原來列車的速度為(x-50)千米/時,根據(jù)題意得.故答案為.【題目點撥】本題主要考查由實際問題抽象出分式方程,解題的關(guān)鍵是理解題意,找到題目蘊含的相等關(guān)系.15、1【解題分析】

分別根據(jù)負整數(shù)指數(shù)冪,0指數(shù)冪的化簡計算出各數(shù),即可解題【題目詳解】解:原式=2﹣1=1,故答案為1.【題目點撥】此題考查負整數(shù)指數(shù)冪,0指數(shù)冪的化簡,難度不大16、m<﹣1.【解題分析】

根據(jù)根的判別式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【題目詳解】∵關(guān)于x的方程x2﹣2x﹣m=0沒有實數(shù)根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案為:m<﹣1.【題目點撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關(guān)系,熟練掌握根的判別式與根的關(guān)系式解答本題的關(guān)鍵.當(dāng)?>0時,一元二次方程有兩個不相等的實數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實數(shù)根;當(dāng)?<0時,一元二次方程沒有實數(shù)根.17、1.【解題分析】

根據(jù)一元二次方程根與系數(shù)的關(guān)系求解即可.【題目詳解】解:根據(jù)題意得,,所以===1.故答案為1.【題目點撥】本題考查了根與系數(shù)的關(guān)系:若、是一元二次方程(a≠0)的兩根時,,.三、解答題(共7小題,滿分69分)18、(1)E(-3,4)、F(-5,0);(2)-334【解題分析】

(1)連接OE,BF,根據(jù)題意可知:BC=OA=8,BA=OC=4,設(shè)EC=x,則BE=OE=8-x,根據(jù)勾股定理可得:OC2+CE2(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE,證明△BGE≌△OGF,證明四邊形OEBF為菱形,令y=0,則3x+3=0,解得x=-3,根據(jù)菱形的性質(zhì)得OF=OE=BE=BF=3令y=n,則3x+3=n,解得x=n-33(3)設(shè)EB=EO=x,則CE=-m-x,在Rt△COE中,根據(jù)勾股定理得到(-m-x)2+n2=x2,解得x=-m2+n22m,求出點E(m2-n22m?,?n)、F(即可求出tan∠EFO=-m【題目詳解】解:(1)如圖:連接OE,BF,E(-3,4)、F(-5,0)(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE可證:△BGE≌△OGF(ASA)∴BE=OF∴四邊形OEBF為菱形令y=0,則3x+3=0,解得x=-3令y=n,則3x+3=n,解得x=n-3在Rt△COE中,(-n-3解得n=3∴E(-3∴k=-(3)設(shè)EB=EO=x,則CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得x=-∴E(m2-n∴EF的中點為(m2將E(m2-n22mn(m2-n∴tan∠EFO=-【題目點撥】考查矩形的折疊與性質(zhì),勾股定理,一次函數(shù)的圖象與性質(zhì),待定系數(shù)法求反比例函數(shù)解析式,銳角三角函數(shù)等,綜合性比較強,難度較大.19、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解題分析】

(1)根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進而解答即可;(2)①根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進而解答即可;②根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進而解答即可;(3)分兩種情況利用勾股定理和三角函數(shù)解答即可.【題目詳解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=AP+PN=AD+AP;(2)①DM=AD﹣AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=PN﹣AP=AD﹣AP;②DM=AP﹣AD,理由如下:∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,∴∠DAP=∠PEN,又∵∠A=∠PNE=90°,DP=PE,∴△DAP≌△PEN,∴AD=PN,∴DM=AN=AP﹣PN=AP﹣AD;(3)有兩種情況,如圖2,DM=3﹣,如圖3,DM=﹣1;①如圖2:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD==3,∴DM=AD﹣AP=3﹣;②如圖3:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD=AP?tan30°==1,∴DM=AP﹣AD=﹣1.故答案為;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.【題目點撥】此題是四邊形綜合題,主要考查了正方形的性質(zhì)全等三角形的判定和性質(zhì),分類討論的數(shù)學(xué)思想解決問題,判斷出△ADP≌△PFN是解本題的關(guān)鍵.20、(1)詳見解析;(2)2;②1或【解題分析】

(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構(gòu)建方程即可解決問題;②分兩種情形討論求解即可.【題目詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設(shè)⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,F(xiàn)M=MC.如圖③中,當(dāng)FM=FC時,易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當(dāng)MC=MF時,連接MO,延長MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【題目點撥】本題考查了圓的綜合題:熟練掌握與圓有關(guān)的性質(zhì)、圓的內(nèi)接正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì);靈活利用全等三角形的性質(zhì);會利用面積的和差計算不規(guī)則幾何圖形的面積.21、(1);(1);(3);【解題分析】

(1)直接根據(jù)概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結(jié)果數(shù),再找出一個徑賽項目和一個田賽項目的結(jié)果數(shù),然后根據(jù)概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結(jié)果數(shù),然后根據(jù)概率公式計算兩個項目都是徑賽項目的概率P1.【題目詳解】解:(1)該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率P=;(1)畫樹狀圖為:共有10種等可能的結(jié)果數(shù),其中一個徑賽項目和一個田賽項目的結(jié)果數(shù)為11,所以一個徑賽項目和一個田賽項目的概率P1==;(3)兩個項目都是徑賽項目的結(jié)果數(shù)為6,所以兩個項目都是徑賽項目的概率P1==.故答案為.考點:列表法與樹狀圖法.22、,當(dāng)x=2時,原式=.【解題分析】試題分析:先括號內(nèi)通分,然后計算除法,最后取值時注意使得分式有意義,最后代

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論