湖北省武漢市武昌區(qū)省水二中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第1頁
湖北省武漢市武昌區(qū)省水二中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第2頁
湖北省武漢市武昌區(qū)省水二中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第3頁
湖北省武漢市武昌區(qū)省水二中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第4頁
湖北省武漢市武昌區(qū)省水二中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省武漢市武昌區(qū)省水二中學(xué)2024屆中考沖刺卷數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.小華在做解方程作業(yè)時,不小心將方程中的一個常數(shù)弄臟了而看不清楚,被弄臟的方程是,這該怎么辦呢?他想了一想,然后看了一下書后面的答案,知道此方程的解是x=5,于是,他很快便補好了這個常數(shù),并迅速地做完了作業(yè)。同學(xué)們,你能補出這個常數(shù)嗎?它應(yīng)該是(

)A.2

B.3

C.4

D.52.由若干個相同的小立方體搭成的幾何體的三視圖如圖所示,則搭成這個幾何體的小立方體的個數(shù)是()A.3 B.4 C.5 D.63.一球鞋廠,現(xiàn)打折促銷賣出330雙球鞋,比上個月多賣10%,設(shè)上個月賣出x雙,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3304.已知二次函數(shù)y=ax1+bx+c+1的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根為x1=x1=﹣1;⑤若點B(﹣,y1)、C(﹣,y1)為函數(shù)圖象上的兩點,則y1>y1.其中正確的個數(shù)是()A.1 B.3 C.4 D.55.學(xué)習(xí)全等三角形時,數(shù)學(xué)興趣小組設(shè)計并組織了“生活中的全等”的比賽,全班同學(xué)的比賽結(jié)果統(tǒng)計如下表:得分(分)60708090100人數(shù)(人)7121083則得分的眾數(shù)和中位數(shù)分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分6.已知:如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點G、D,若△AGC的周長為31cm,AB=20cm,則△ABC的周長為()A.31cm B.41cm C.51cm D.61cm7.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.68.下列命題是真命題的是()A.過一點有且只有一條直線與已知直線平行B.對角線相等且互相垂直的四邊形是正方形C.平分弦的直徑垂直于弦,并且平分弦所對的弧D.若三角形的三邊a,b,c滿足a2+b2+c2=ac+bc+ab,則該三角形是正三角形9.如果邊長相等的正五邊形和正方形的一邊重合,那么∠1的度數(shù)是()A.30° B.15° C.18° D.20°10.一個幾何體的三視圖如圖所示,這個幾何體是()A.棱柱B.正方形C.圓柱D.圓錐二、填空題(共7小題,每小題3分,滿分21分)11.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內(nèi)部的點F處.若∠CBF=25°,則∠FDA的度數(shù)為_________.12.如圖,從一個直徑為1m的圓形鐵片中剪出一個圓心角為90°的扇形,再將剪下的扇形圍成一個圓錐,則圓錐的底面半徑為_____m.13.如圖所示,四邊形ABCD中,,對角線AC、BD交于點E,且,,若,,則CE的長為_____.14.已知一塊等腰三角形鋼板的底邊長為60cm,腰長為50cm,能從這塊鋼板上截得得最大圓得半徑為________cm15.計算:_______________.16.如圖,是用三角形擺成的圖案,擺第一層圖需要1個三角形,擺第二層圖需要3個三角形,擺第三層圖需要7個三角形,擺第四層圖需要13個三角形,擺第五層圖需要21個三角形,…,擺第n層圖需要_____個三角形.17.如圖,A、B是反比例函數(shù)y=(k>0)圖象上的點,A、B兩點的橫坐標(biāo)分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=1.則k=_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標(biāo)系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標(biāo);(3)在拋物線上是否存在點E:它關(guān)于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標(biāo),如果不存在,試說明理由.19.(5分)如圖,分別延長?ABCD的邊到,使,連接EF,分別交于,連結(jié)求證:.20.(8分)如圖,已知正方形ABCD的邊長為4,點P是AB邊上的一個動點,連接CP,過點P作PC的垂線交AD于點E,以PE為邊作正方形PEFG,頂點G在線段PC上,對角線EG、PF相交于點O.(1)若AP=1,則AE=;(2)①求證:點O一定在△APE的外接圓上;②當(dāng)點P從點A運動到點B時,點O也隨之運動,求點O經(jīng)過的路徑長;(3)在點P從點A到點B的運動過程中,△APE的外接圓的圓心也隨之運動,求該圓心到AB邊的距離的最大值.21.(10分)觀察與思考:閱讀下列材料,并解決后面的問題在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=;AC=;(2)自從去年日本政府自主自導(dǎo)“釣魚島國有化”鬧劇以來,我國政府靈活應(yīng)對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,≈2.449)22.(10分)6月14日是“世界獻血日”,某市采取自愿報名的方式組織市民義務(wù)獻血.獻血時要對獻血者的血型進行檢測,檢測結(jié)果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻血者人群中,隨機抽取了部分獻血者的血型結(jié)果進行統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了兩幅不完整的圖表:血型ABABO人數(shù)105(1)這次隨機抽取的獻血者人數(shù)為人,m=;補全上表中的數(shù)據(jù);若這次活動中該市有3000人義務(wù)獻血,請你根據(jù)抽樣結(jié)果回答:從獻血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?23.(12分)如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.(1)求證:DE是⊙O的切線;(2)若AC∥DE,當(dāng)AB=8,CE=2時,求AC的長.24.(14分)(1)計算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化簡:÷(1﹣)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】

設(shè)這個數(shù)是a,把x=1代入方程得出一個關(guān)于a的方程,求出方程的解即可.【題目詳解】設(shè)這個數(shù)是a,把x=1代入得:(-2+1)=1-,∴1=1-,解得:a=1.故選:D.【題目點撥】本題主要考查對解一元一次方程,等式的性質(zhì),一元一次方程的解等知識點的理解和掌握,能得出一個關(guān)于a的方程是解此題的關(guān)鍵.2、B【解題分析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從主視圖看第一列兩個正方體,說明俯視圖中的左邊一列有兩個正方體,主視圖右邊的一列只有一行,說明俯視圖中的右邊一行只有一列,所以此幾何體共有四個正方體.故選B.3、D【解題分析】解:設(shè)上個月賣出x雙,根據(jù)題意得:(1+10%)x=1.故選D.4、D【解題分析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【題目詳解】解:①由拋物線的對稱軸可知:,∴,由拋物線與軸的交點可知:,∴,∴,故①正確;②拋物線與軸只有一個交點,∴,∴,故②正確;③令,∴,∵,∴,∴,∴,∵,∴,故③正確;④由圖象可知:令,即的解為,∴的根為,故④正確;⑤∵,∴,故⑤正確;故選D.【題目點撥】考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是熟練運用數(shù)形結(jié)合的思想.5、C【解題分析】

解:根據(jù)表格中的數(shù)據(jù),可知70出現(xiàn)的次數(shù)最多,可知其眾數(shù)為70分;把數(shù)據(jù)按從小到大排列,可知其中間的兩個的平均數(shù)為80分,故中位數(shù)為80分.故選C.【題目點撥】本題考查數(shù)據(jù)分析.6、C【解題分析】∵DG是AB邊的垂直平分線,∴GA=GB,△AGC的周長=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周長=AC+BC+AB=51cm,故選C.7、C【解題分析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).8、D【解題分析】

根據(jù)真假命題的定義及有關(guān)性質(zhì)逐項判斷即可.【題目詳解】A、真命題為:過直線外一點有且只有一條直線與已知直線平行,故本選項錯誤;B、真命題為:對角線相等且互相垂直的四邊形是正方形或等腰梯形,故本選項錯誤;C、真命題為:平分弦的直徑垂直于弦(非直徑),并且平分弦所對的弧,故本選項錯誤;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本選項正確.故選D.【題目點撥】本題考查了命題的真假,熟練掌握真假命題的定義及幾何圖形的性質(zhì)是解答本題的關(guān)鍵,當(dāng)命題的條件成立時,結(jié)論也一定成立的命題叫做真命題;當(dāng)命題的條件成立時,不能保證命題的結(jié)論總是成立的命題叫做假命題.熟練掌握所學(xué)性質(zhì)是解答本題的關(guān)鍵.9、C【解題分析】

∠1的度數(shù)是正五邊形的內(nèi)角與正方形的內(nèi)角的度數(shù)的差,根據(jù)多邊形的內(nèi)角和定理求得角的度數(shù),進而求解.【題目詳解】∵正五邊形的內(nèi)角的度數(shù)是×(5-2)×180°=108°,正方形的內(nèi)角是90°,

∴∠1=108°-90°=18°.故選C【題目點撥】本題考查了多邊形的內(nèi)角和定理、正五邊形和正方形的性質(zhì),求得正五邊形的內(nèi)角的度數(shù)是關(guān)鍵.10、C【解題分析】試題解析:根據(jù)主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據(jù)俯視圖是圓可判斷出該幾何體為圓柱.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、50°【解題分析】

延長BF交CD于G,根據(jù)折疊的性質(zhì)和平行四邊形的性質(zhì),證明△BCG≌△DAE,從而∠7=∠6=25°,進而可求∠FDA得度數(shù).【題目詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【題目點撥】本題考查了折疊的性質(zhì),平行四邊形的性質(zhì),全等三角形的判定與性質(zhì).證明△BCG≌△DAE是解答本題的關(guān)鍵.12、m.【解題分析】

利用勾股定理易得扇形的半徑,那么就能求得扇形的弧長,除以2π即為圓錐的底面半徑.【題目詳解】解:易得扇形的圓心角所對的弦是直徑,∴扇形的半徑為:m,∴扇形的弧長為:=πm,∴圓錐的底面半徑為:π÷2π=m.【題目點撥】本題考查:90度的圓周角所對的弦是直徑;圓錐的側(cè)面展開圖的弧長等于圓錐的底面周長,解題關(guān)鍵是弧長公式.13、【解題分析】

此題有等腰三角形,所以可作BH⊥CD,交EC于點G,利用三線合一性質(zhì)及鄰補角互補可得∠BGD=120°,根據(jù)四邊形內(nèi)角和360°,得到∠ABG+∠ADG=180°.此時再延長GB至K,使AK=AG,構(gòu)造出等邊△AGK.易證△ABK≌△ADG,從而說明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關(guān)系求出CG長度,在Rt△DBH中利用勾股定理及三角函數(shù)知識得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長度,最后CE=CG+GE求解.【題目詳解】如圖,作于H,交AC于點G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設(shè),則,,∴,∴,在中,,解得,,當(dāng)時,,所以,∴,,,作,設(shè),,,,,∴,,∴,則,故答案為【題目點撥】本題主要考查了等腰三角形的性質(zhì)及等邊三角形、全等三角形的判定和性質(zhì)以及勾股定理的運用,綜合性較強,正確作出輔助線是解題的關(guān)鍵.14、15【解題分析】如圖,等腰△ABC的內(nèi)切圓⊙O是能從這塊鋼板上截得的最大圓,則由題意可知:AD和BF是△ABC的角平分線,AB=AC=50cm,BC=60cm,∴∠ADB=90°,BD=CD=30cm,∴AD=(cm),連接圓心O和切點E,則∠BEO=90°,又∵OD=OE,OB=OB,∴△BEO≌△BDO,∴BE=BD=30cm,∴AE=AB-BE=50-30=20cm,設(shè)OD=OE=x,則AO=40-x,在Rt△AOE中,由勾股定理可得:,解得:(cm).即能截得的最大圓的半徑為15cm.故答案為:15.點睛:(1)三角形中能夠裁剪出的最大的圓是這個三角形的內(nèi)切圓;(2)若三角形的三邊長分別為a、b、c,面積為S,內(nèi)切圓的半徑為r,則.15、【解題分析】

先把化簡為2,再合并同類二次根式即可得解.【題目詳解】2-=.故答案為.【題目點撥】本題考查了二次根式的運算,正確對二次根式進行化簡是關(guān)鍵.16、n2﹣n+1【解題分析】

觀察可得,第1層三角形的個數(shù)為1,第2層三角形的個數(shù)為3,比第1層多2個;第3層三角形的個數(shù)為7,比第2層多4個;…可得,每一層比上一層多的個數(shù)依次為2,4,6,…據(jù)此作答.【題目詳解】觀察可得,第1層三角形的個數(shù)為1,第2層三角形的個數(shù)為22?2+1=3,第3層三角形的個數(shù)為32?3+1=7,第四層圖需要42?4+1=13個三角形擺第五層圖需要52?5+1=21.那么擺第n層圖需要n2?n+1個三角形。故答案為:n2?n+1.【題目點撥】本題考查了規(guī)律型:圖形的變化類,解題的關(guān)鍵是由圖形得到一般規(guī)律.17、2【解題分析】解:分別過點A、B作x軸的垂線,垂足分別為D、E.則AD∥BE,AD=2BE=,∴B、E分別是AC、DC的中點.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,),B(2a,),∴S△AOC=AD×CO=×3a×==1,解得:k=2.三、解答題(共7小題,滿分69分)18、(1)k=-,b=1;(1)(0,1)和【解題分析】分析:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得,進而得到A、B、D的坐標(biāo),然后分兩種情況討論即可;(3)設(shè)E(a,),E關(guān)于直線AB的對稱點E′為(0,b),EE′與AB的交點為P.則EE′⊥AB,P為EE′的中點,列方程組,求解即可得到a的值,進而得到答案.詳解:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得.∵直線與x軸、y軸分別相交于點、,∴點的坐標(biāo)是,點的坐標(biāo)是.∵拋物線的頂點是點,∴點的坐標(biāo)是.∵點是軸上一點,∴設(shè)點的坐標(biāo)是.∵△BCG與△BCD相似,又由題意知,,∴△BCG與△相似有兩種可能情況:①如果,那么,解得,∴點的坐標(biāo)是.②如果,那么,解得,∴點的坐標(biāo)是.綜上所述:符合要求的點有兩個,其坐標(biāo)分別是和.(3)設(shè)E(a,),E關(guān)于直線AB的對稱點E′為(0,b),EE′與AB的交點為P,則EE′⊥AB,P為EE′的中點,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.當(dāng)a=-1時,=;當(dāng)a=1時,=;∴點的坐標(biāo)是或.點睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)的性質(zhì)、解析式的求法以及相似三角形的性質(zhì).解答(1)問的關(guān)鍵是要分類討論,解答(3)的關(guān)鍵是利用兩直線垂直則k的乘積為-1和P是EE′的中點.19、證明見解析【解題分析】分析:根據(jù)平行四邊形的性質(zhì)以及已知的條件得出△EGD和△FHB全等,從而得出DG=BH,從而說明AG和CH平行且相等,得出四邊形AHCG為平行四邊形,從而得出答案.詳解:證明:在?ABCD中,,,又

,≌,,,又,四邊形AGCH為平行四邊形,.點睛:本題主要考查的是平行四邊形的性質(zhì)以及判定定理,屬于基礎(chǔ)題型.解決這個問題的關(guān)鍵就是根據(jù)平行四邊形的性質(zhì)得出四邊形AHCG為平行四邊形.20、(1)34;(2)①證明見解析;②22;(3)【解題分析】試題分析:(1)由正方形的性質(zhì)得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關(guān)系證出∠AEP=∠PBC,得出△APE∽△BCP,得出對應(yīng)邊成比例即可求出AE的長;(2)①A、P、O、E四點共圓,即可得出結(jié)論;②連接OA、AC,由勾股定理求出AC=42,由圓周角定理得出∠OAP=∠OEP=45°,周長點O在AC上,當(dāng)P運動到點B時,O為AC(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得出MN=12AE,設(shè)AP=x,則BP=4﹣x,由相似三角形的對應(yīng)邊成比例求出AE的表達式,由二次函數(shù)的最大值求出AE的最大值為1,得出MN的最大值=1試題解析:(1)∵四邊形ABCD、四邊形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴AEBP=APBC,即AE4-1故答案為:34(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四點共圓,∴點O一定在△APE的外接圓上;②連接OA、AC,如圖1所示:∵四邊形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC=42+4∵A、P、O、E四點共圓,∴∠OAP=∠OEP=45°,∴點O在AC上,當(dāng)P運動到點B時,O為AC的中點,OA=12AC=2即點O經(jīng)過的路徑長為22(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,如圖2所示:則MN∥AE,∵ME=MP,∴AN=PN,∴MN=12AE設(shè)AP=x,則BP=4﹣x,由(1)得:△APE∽△BCP,∴AEBP=APBC,即AE4-x=x∴x=2時,AE的最大值為1,此時MN的值最大=12×1=1即△APE的圓心到AB邊的距離的最大值為12【題目點撥】本題考查圓、二次函數(shù)的最值等,正確地添加輔助線,根據(jù)已知證明△APE∽△BCP是解題的關(guān)鍵.21、(1)60,20;(2)漁政船距海島A的距離AB約為24.49海里.【解題分析】

(1)利用題目總結(jié)的正弦定理,將有關(guān)數(shù)據(jù)代入求解即可;(2)在△ABC中,分別求得BC的長和三個內(nèi)角的度數(shù),利用題目中總結(jié)的正弦定理求AC的長即可.【題目詳解】(1)由正玄定理得:∠A=60°,AC=20;故答案為60°,20;(2)如圖:依題意,得BC=40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,,即,解得AB=10≈24.49(海里).答:漁政船距海島A的距離AB約為24.49海里.【題目點撥】本題考查了方向角的知識,更重要的是考查了同學(xué)們的閱讀理解能力,通過材料總結(jié)出學(xué)生們沒有接觸的知識,并根據(jù)此知識點解決相關(guān)的問題,是近幾年中考的高頻考點.22、(1)50,20;(2)12,23;見圖;(3)大約有720人是A型血.【解題分析】【分析】(1)用AB型的人數(shù)除以它所占的百分比得到隨機抽取的獻血者的總?cè)藬?shù),然后用B型的人數(shù)除以抽取的總?cè)藬?shù)即可求得m的值;(2)先計算出O型的人數(shù),再計算出A型人數(shù),從而可補全上表中的數(shù)據(jù);(3)用樣本中A型的人數(shù)除以50得到血型是A型的概率,然后用3000乘以此概率可估計這3000人中是A型血的人數(shù).【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論