版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省鹽城市大豐區(qū)大豐區(qū)萬盈鎮(zhèn)沈灶初級中學十校聯(lián)考最后數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AB為⊙O的直徑,C為⊙O上的一動點(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當C在⊙O上運動時,點P的位置()
A.隨點C的運動而變化B.不變C.在使PA=OA的劣弧上D.無法確定2.下列各數中,最小的數是A. B. C.0 D.3.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元4.每個人都應懷有對水的敬畏之心,從點滴做起,節(jié)水、愛水,保護我們生活的美好世界.某地近年來持續(xù)干旱,為倡導節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關于用水量的統(tǒng)計量不會發(fā)生改變的是()用水量x(噸)34567頻數1254﹣xxA.平均數、中位數B.眾數、中位數C.平均數、方差D.眾數、方差5.下列運算正確的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3?x=x46.下列圖形是幾家通訊公司的標志,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7.如圖,在⊙O中,弦AB=CD,AB⊥CD于點E,已知CE?ED=3,BE=1,則⊙O的直徑是()A.2 B. C.2 D.58.一個不透明的袋子里裝著質地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.9.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點.若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π10.關于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一個根為0,則a值為()A.1 B.﹣1 C.±1 D.011.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.12.下列計算中,錯誤的是()A.; B.; C.; D..二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若關于x的方程kx2+2x﹣1=0有實數根,則k的取值范圍是_____.14.如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉90°后,得到△A′O′B,且反比例函數y=的圖象恰好經過斜邊A′B的中點C,若SABO=4,tan∠BAO=2,則k=_____.15.在正方形中,,點在對角線上運動,連接,過點作,交直線于點(點不與點重合),連接,設,,則和之間的關系是__________(用含的代數式表示).16.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點P(a,2),則關于x的不等式x+1≥mx+n的解集為__________.17.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內部的點F處.若∠CBF=25°,則∠FDA的度數為_________.18.已知:如圖,△ABC內接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點,求tan∠ABE.20.(6分)黃巖某校搬遷后,需要增加教師和學生的寢室數量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因實際需要,單人間的數量在20至30之間(包括20和30),且四人間的數量是雙人間的5倍.(1)若2018年學校寢室數為64個,以后逐年增加,預計2020年寢室數達到121個,求2018至2020年寢室數量的年平均增長率;(2)若三類不同的寢室的總數為121個,則最多可供多少師生住宿?21.(6分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點C旋轉.當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是;②設△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數量關系是.猜想論證當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S1的數量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應的BF的長22.(8分)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞著點B順時針旋轉角a(0°<a<90°)得到△A1BC;A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.(1)如圖1,觀察并猜想,在旋轉過程中,線段BE與BF有怎樣的數量關系?并證明你的結論.(2)如圖2,當a=30°時,試判斷四邊形BC1DA的形狀,并證明.(3)在(2)的條件下,求線段DE的長度.23.(8分)化簡:.24.(10分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.25.(10分)如圖,AB=AD,AC=AE,BC=DE,點E在BC上.求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB.26.(12分)下面是一位同學的一道作圖題:已知線段a、b、c(如圖),求作線段x,使他的作法如下:(1)以點O為端點畫射線,.(2)在上依次截取,.(3)在上截?。?)聯(lián)結,過點B作,交于點D.所以:線段________就是所求的線段x.①試將結論補完整②這位同學作圖的依據是________③如果,,,試用向量表示向量.27.(12分)工人小王生產甲、乙兩種產品,生產產品件數與所用時間之間的關系如表:生產甲產品件數(件)生產乙產品件數(件)所用總時間(分鐘)10103503020850(1)小王每生產一件甲種產品和每生產一件乙種產品分別需要多少分鐘?(2)小王每天工作8個小時,每月工作25天.如果小王四月份生產甲種產品a件(a為正整數).①用含a的代數式表示小王四月份生產乙種產品的件數;②已知每生產一件甲產品可得1.50元,每生產一件乙種產品可得2.80元,若小王四月份的工資不少于1500元,求a的取值范圍.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】
因為CP是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【題目詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,
又∵OC=OP,
∴∠OCP=∠OPC,
∴∠DCP=∠OPC,
∴CD∥OP,
又∵CD⊥AB,
∴OP⊥AB,
∴,
∴PA=PB.
∴點P是線段AB垂直平分線和圓的交點,
∴當C在⊙O上運動時,點P不動.
故選:B.【題目點撥】本題考查了圓心角、弦、弧之間的關系,以及平行線的判定和性質,在同圓或等圓中,等弧對等弦.2、A【解題分析】
應明確在數軸上,從左到右的順序,就是數從小到大的順序,據此解答.【題目詳解】解:因為在數軸上-3在其他數的左邊,所以-3最??;故選A.【題目點撥】此題考負數的大小比較,應理解數字大的負數反而小.3、D【解題分析】
設y與x之間的函數關系式為y=kπx2,由待定系數法就可以求出解析式,再求出x=6時y的值即可得.【題目詳解】解:根據題意設y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【題目點撥】本題考查了二次函數的應用,解答時求出函數的解析式是關鍵.4、B【解題分析】
由頻數分布表可知后兩組的頻數和為4,即可得知頻數之和,結合前兩組的頻數知第6、7個數據的平均數,可得答案.【題目詳解】∵6噸和7噸的頻數之和為4-x+x=4,∴頻數之和為1+2+5+4=12,則這組數據的中位數為第6、7個數據的平均數,即5+52∴對于不同的正整數x,中位數不會發(fā)生改變,∵后兩組頻數和等于4,小于5,∴對于不同的正整數x,眾數不會發(fā)生改變,眾數依然是5噸.故選B.【題目點撥】本題主要考查頻數分布表及統(tǒng)計量的選擇,由表中數據得出數據的總數是根本,熟練掌握平均數、中位數、眾數的定義和計算方法是解題的關鍵.5、D【解題分析】A.x4+x4=2x4,故錯誤;B.(x2)3=x6,故錯誤;C.(x﹣y)2=x2﹣2xy+y2,故錯誤;D.x3?x=x4,正確,故選D.6、C【解題分析】
根據軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】A.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;C.是軸對稱圖形,也是中心對稱圖形.故正確;D.不是軸對稱圖形,是中心對稱圖形.故錯誤.故選C.【題目點撥】掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180°后與原圖重合.7、C【解題分析】
作OH⊥AB于H,OG⊥CD于G,連接OA,根據相交弦定理求出EA,根據題意求出CD,根據垂徑定理、勾股定理計算即可.【題目詳解】解:作OH⊥AB于H,OG⊥CD于G,連接OA,由相交弦定理得,CE?ED=EA?BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE?ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由題意得,四邊形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=,∴⊙O的直徑為,故選C.【題目點撥】此題考查了相交弦定理、垂徑定理、勾股定理、矩形的判定與性質;根據圖形作出相應的輔助線是解本題的關鍵.8、A【解題分析】
列表或畫樹狀圖得出所有等可能的結果,找出兩次都為紅球的情況數,即可求出所求的概率:【題目詳解】列表如下:
紅
紅
紅
綠
綠
紅
﹣﹣﹣
(紅,紅)
(紅,紅)
(綠,紅)
(綠,綠)
紅
(紅,紅)
﹣﹣﹣
(紅,紅)
(綠,紅)
(綠,紅)
紅
(紅,紅)
(紅,紅)
﹣﹣﹣
(綠,紅)
(綠,紅)
綠
(紅,綠)
(紅,綠)
(紅,綠)
﹣﹣﹣
(綠,綠)
綠
(紅,綠)
(紅,綠)
(紅,綠)
(綠,綠)
﹣﹣﹣
∵所有等可能的情況數為20種,其中兩次都為紅球的情況有6種,∴,故選A.9、A【解題分析】
根據圓心角與弧的關系得到∠AOB=∠BOC=∠COD=60°,根據扇形面積公式計算即可.【題目詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.【題目點撥】本題考查的知識點是扇形面積的計算,解題關鍵是利用圓心角與弧的關系得到∠AOB=∠BOC=∠COD=60°.10、B【解題分析】
根據一元二次方程的定義和一元二次方程的解的定義得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【題目詳解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是關于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故選:B.【題目點撥】本題考查了對一元二次方程的定義,一元二次方程的解等知識點的理解和運用,注意根據已知得出a﹣1≠0,a2﹣1=0,不要漏掉對一元二次方程二次項系數不為0的考慮.11、B【解題分析】
連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【題目詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.【題目點撥】考查弧長公式,等邊三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,屬于中考??碱}型.12、B【解題分析】分析:根據零指數冪、有理數的乘方、分數指數冪及負整數指數冪的意義作答即可.詳解:A.,故A正確;B.,故B錯誤;C..故C正確;D.,故D正確;故選B.點睛:本題考查了零指數冪、有理數的乘方、分數指數冪及負整數指數冪的意義,需熟練掌握且區(qū)分清楚,才不容易出錯.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、k≥-1【解題分析】
首先討論當時,方程是一元一次方程,有實數根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結合得出答案即可.【題目詳解】當時,方程是一元一次方程:,方程有實數根;當時,方程是一元二次方程,解得:且.綜上所述,關于的方程有實數根,則的取值范圍是.故答案為【題目點撥】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.14、1【解題分析】設點C坐標為(x,y),作CD⊥BO′交邊BO′于點D,∵tan∠BAO=2,∴=2,∵S△ABO=?AO?BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵點C為斜邊A′B的中點,CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案為1.15、或【解題分析】
當F在邊AB上時,如圖1作輔助線,先證明≌,得,,根據正切的定義表示即可;當F在BA的延長線上時,如圖2,同理可得:≌,表示AF的長,同理可得結論.【題目詳解】解:分兩種情況:
當F在邊AB上時,如圖1,
過E作,交AB于G,交DC于H,
四邊形ABCD是正方形,
,,,
,,
,
,
≌,
,
,
,
中,,
即;
當F在BA的延長線上時,如圖2,
同理可得:≌,
,
,
,
中,.【題目點撥】本題考查了正方形的性質、三角形全等的性質和判定、三角函數等知識,熟練掌握正方形中輔助線的作法是關鍵,并注意F在直線AB上,分類討論.16、x≥1【解題分析】
把y=2代入y=x+1,得x=1,∴點P的坐標為(1,2),根據圖象可以知道當x≥1時,y=x+1的函數值不小于y=mx+n相應的函數值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【題目點撥】本題考查了一次函數與不等式(組)的關系及數形結合思想的應用.解決此類問題關鍵是仔細觀察圖形,注意幾個關鍵點(交點、原點等),做到數形結合.17、50°【解題分析】
延長BF交CD于G,根據折疊的性質和平行四邊形的性質,證明△BCG≌△DAE,從而∠7=∠6=25°,進而可求∠FDA得度數.【題目詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【題目點撥】本題考查了折疊的性質,平行四邊形的性質,全等三角形的判定與性質.證明△BCG≌△DAE是解答本題的關鍵.18、2﹣π.【解題分析】試題分析:根據題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)1【解題分析】
(1)根據正方形的性質得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根據垂線和三角形內角和定理得到∠2+∠3=90°,推出∠1=∠3,根據ASA推出△ABE≌△BCN;(2)tan∠ABE=AEAB【題目詳解】(1)證明:∵四邊形ABCD為正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∠A=∴△ABE≌△BCN(ASA);(2)∵N為AB中點,∴BN=12又∵△ABE≌△BCN,∴AE=BN=12在Rt△ABE中,tan∠ABE═AEAB【題目點撥】本題主要考查了正方形的性質、三角形的內角和定理、垂線、全等三角形的性質和判定以及銳角三角函數等知識點的掌握和理解,證出△ABE≌△BCN是解此題的關鍵.20、(1)2018至2020年寢室數量的年平均增長率為37.5%;(2)該校的寢室建成后最多可供1名師生住宿.【解題分析】
(1)設2018至2020年寢室數量的年平均增長率為x,根據2018及2020年寢室數量,即可得出關于x的一元二次方程,解之取其正值即可得出結論;(2)設雙人間有y間,則四人間有5y間,單人間有(121-6y)間,可容納人數為w人,由單人間的數量在20至30之間(包括20和30),即可得出關于y的一元一次不等式組,解之即可得出y的取值范圍,再根據可住師生數=寢室數×每間寢室可住人數,可找出w關于y的函數關系式,利用一次函數的性質即可解決最值問題.【題目詳解】(1)解:設2018至2020年寢室數量的年平均增長率為x,根據題意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合題意,舍去).答:2018至2020年寢室數量的年平均增長率為37.5%.(2)解:設雙人間有y間,可容納人數為w人,則四人間有5y間,單人間有(121﹣6y)間,∵單人間的數量在20至30之間(包括20和30),∴,解得:15≤y≤16.根據題意得:w=2y+20y+121﹣6y=16y+121,∴當y=16時,16y+121取得最大值為1.答:該校的寢室建成后最多可供1名師生住宿.【題目點撥】本題考查了一元二次方程的應用、一元一次不等式組的應用以及一次函數的性質,解題的關鍵是:(1)找準等量關系,正確列出一元二次方程;(2)根據數量之間的關系,找出w關于y的函數關系式.21、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解題分析】
(1)①由旋轉可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,
∵△DEC是由△ABC繞點C旋轉得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S1;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此時S△DCF1=S△BDE;
過點D作DF1⊥BD,
∵∠ABC=20°,F(xiàn)1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1是等邊三角形,
∴DF1=DF1,過點D作DG⊥BC于G,
∵BD=CD,∠ABC=20°,點D是角平分線上一點,
∴∠DBC=∠DCB=×20°=30°,BG=BC=,
∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF1=320°-150°-20°=150°,
∴∠CDF1=∠CDF1,
∵在△CDF1和△CDF1中,,
∴△CDF1≌△CDF1(SAS),
∴點F1也是所求的點,
∵∠ABC=20°,點D是角平分線上一點,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×20°=30°,
又∵BD=3,
∴BE=×3÷cos30°=3,
∴BF1=3,BF1=BF1+F1F1=3+3=2,
故BF的長為3或2.22、(1)(2)四邊形是菱形.(3)【解題分析】
(1)根據等邊對等角及旋轉的特征可得即可證得結論;
(2)先根據兩組對邊分別平行的四邊形是平行四邊形,再得到鄰邊相等即可判斷結論;
(3)過點E作于點G,解可得AE的長,結合菱形的性質即可求得結果.【題目詳解】(1)證明:(證法一)由旋轉可知,∴∴又∴即(證法二)由旋轉可知,而∴∴∴即(2)四邊形是菱形.證明:同理∴四邊形是平行四邊形.又∴四邊形是菱形(3)過點作于點,則在中,.由(2)知四邊形是菱形,∴∴【題目點撥】解答本題的關鍵是掌握好旋轉的性質,平行四邊形判定與性質,的菱形的判定與性質,選擇適當的條件解決問題.23、【解題分析】
原式第一項利用完全平方公式化簡,第二項利用單項式乘多項式法則計算,去括號合并即可得到結果.【題目詳解】解:原式.24、﹣6+2【解題分析】分析:直接利用二次根式的性質以及絕對值的性質和特殊角的三角函數值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點睛:此題主要考查了實數運算,正確化簡各數是解題關鍵.25、(1)詳見解析;(2)詳見解析.【解題分析】
(1)用“SSS”證明即可;(2)借助全等三角形的性質及角的和差求出∠DAB=∠EAC,再利用三角形內角和定理求出∠DEB=∠DAB,即可說明∠EAC=∠DEB.【題目詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 我國上市公司現(xiàn)金持有量影響因素剖析:理論、實證與策略
- 深度神經網絡在新型能源系統(tǒng)中的應用及展望
- 2026江西中醫(yī)藥大學現(xiàn)代中藥制劑教育部重點實驗室科研助理招聘1人備考題庫及1套完整答案詳解
- 老年泌尿系感染患者尿常規(guī)動態(tài)監(jiān)測方案
- 《2026年》策略運營崗位高頻面試題包含詳細解答
- 2026年及未來5年市場數據中國北京體育用品行業(yè)發(fā)展前景預測及投資戰(zhàn)略咨詢報告
- 2026年及未來5年市場數據中國轉化醫(yī)學研究院行業(yè)發(fā)展前景預測及投資方向研究報告
- 2026年及未來5年市場數據中國蔬菜深加工行業(yè)發(fā)展監(jiān)測及發(fā)展趨勢預測報告
- 老年慢性疼痛患者的康復治療新策略
- 企業(yè)黨務考試題及答案
- 四年級數學除法三位數除以兩位數100道題 整除 帶答案
- 裝修公司施工進度管控流程詳解
- 村委會 工作總結
- 2025國家電網考試歷年真題庫附參考答案
- (正式版)DB33∕T 2059-2025 《城市公共交通服務評價指標》
- 2024-2025學年江蘇省南京市玄武區(qū)八年級上學期期末語文試題及答案
- 連鎖餐飲門店運營管理標準流程
- GB/T 755-2025旋轉電機定額與性能
- 鋼結構防護棚工程施工方案
- 2025低空經濟發(fā)展及關鍵技術概況報告
- 中國藥物性肝損傷診治指南(2024年版)解讀
評論
0/150
提交評論