版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆山東省菏澤市東明縣第一中學(xué)高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若(其中.),則的最小值為()A. B.C.2 D.42.函數(shù)零點所在區(qū)間為A. B.C. D.3.已知命題p:?n∈N,2n>2021.那么A.?n∈N,2n≤2021 B.?n∈NC.?n∈N,2n≤2021 D.?n∈N4.如圖,在中,已知為上一點,且滿足,則實數(shù)的值為A. B.C. D.5.已知函數(shù)(,,)的圖象如圖所示,則()A.B.對于任意,,且,都有C.,都有D.,使得6.下列六個關(guān)系式:⑴其中正確的個數(shù)為()A.6個 B.5個C.4個 D.少于4個7.設(shè)全集,集合,,則A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}8.函數(shù)的圖象大致是A. B.C. D.9.下列四個函數(shù),以為最小正周期,且在區(qū)間上單調(diào)遞減的是()A. B.C. D.10.已知點(a,2)在冪函數(shù)的圖象上,則函數(shù)f(x)的解析式是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某池塘里原有一塊浮萍,浮萍蔓延后的面積(單位:平方米)與時間(單位:月)的關(guān)系式為(且)圖象如圖所示.則下列結(jié)論:①浮萍蔓延每個月增長的面積都相同;②浮萍蔓延個月后的面積是浮萍蔓延個月后的面積的;③浮萍蔓延每個月增長率相同,都是;④浮萍蔓延到平方米所經(jīng)過的時間與蔓延到平方米所經(jīng)過的時間的和比蔓延到平方米所經(jīng)過的時間少.其中正確結(jié)論的序號是_____12.函數(shù)為奇函數(shù),且對任意互不相等的,,都有成立,且,則的解集為______13.已知向量、滿足:,,,則_________.14.將函數(shù)y=sin2x+π4的圖象上各點的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的15.若直線上存在滿足以下條件的點:過點作圓的兩條切線(切點分別為),四邊形的面積等于,則實數(shù)的取值范圍是_______16.已知,則滿足f(x)=的x的值為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)若,求的單調(diào)區(qū)間;(2)若有最大值3,求實數(shù)的值.18.已知(1)化簡;(2)若是第三象限角,且,求的值19.已知函數(shù)的圖象相鄰兩條對稱軸之間的距離為.(1)當(dāng)時,求函數(shù)的最大值和最小值;(2)將函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象,若為偶函數(shù),求的值.20.中國茶文化博大精深,茶水的口感與茶葉類型和茶水的溫度有關(guān).經(jīng)驗表明,某種綠茶,用一定溫度的水泡制,再等到茶水溫度降至某一溫度時,可以產(chǎn)生最佳口感.某研究員在泡制茶水的過程中,每隔1min測量一次茶水溫度,收集到以下數(shù)據(jù):時間/min012345水溫/℃85.0079.0073.6068.7464.3660.42設(shè)茶水溫度從85°C開始,經(jīng)過tmin后溫度為y℃,為了刻畫茶水溫度隨時間變化的規(guī)律,現(xiàn)有以下兩種函數(shù)模型供選擇:①;②(1)選出你認為最符合實際的函數(shù)模型,說明理由,并參考表格中前3組數(shù)據(jù),求出函數(shù)模型的解析式;(2)若茶水溫度降至55℃時飲用,可以產(chǎn)生最佳口感,根據(jù)(1)中的函數(shù)模型,剛泡好的茶水大約需要放置多長時間才能達到最佳飲用口感?(參考數(shù)據(jù):,)21.已知.(1)求,的值;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)二次函數(shù)的性質(zhì)及對數(shù)的運算可得,利用均值不等式求最值即可.詳解】,由,,即,,當(dāng)且僅當(dāng),即時等號成立,故選:B2、C【解析】利用零點存在性定理計算,由此求得函數(shù)零點所在區(qū)間.【詳解】依題意可知在上為增函數(shù),且,,,所以函數(shù)零點在區(qū)間.故選C.【點睛】本小題主要考查零點存在性定理的運用,屬于基礎(chǔ)題.3、A【解析】根據(jù)含有一個量詞命題否定的定義,即可得答案.【詳解】命題p:?n∈N,2n>2021的否定?p為:?n∈N,故選:A4、B【解析】所以,所以。故選B。5、C【解析】根據(jù)給定函數(shù)圖象求出函數(shù)的解析式,再逐一分析各個選項即可判斷作答.【詳解】觀察函數(shù)的圖象得:,令的周期為,則,即,,由,且得:,于是有,對于A,,A不正確;對于B,取且,滿足,,且,而,,此時,B不正確;對于C,,,,即,都有,C正確;對于D,由得:,解得:,令,解得與矛盾,D不正確.故選:C6、C【解析】根據(jù)集合自身是自身的子集,可知①正確;根據(jù)集合無序性可知②正確;根據(jù)元素與集合只有屬于與不屬于關(guān)系可知③⑤不正確;根據(jù)元素與集合之間的關(guān)系可知④正確;根據(jù)空集是任何集合的子集可知⑥正確,即正確的關(guān)系式個數(shù)為個,故選C.點睛:本題主要考查了:(1)點睛:集合的三要素是:確定性、互異性和無序性,;(2)元素和集合之間是屬于關(guān)系,子集和集合之間是包含關(guān)系;(3)不含任何元素的集合稱為空集,空集是任何集合的子集7、B【解析】根據(jù)集合的補集和交集的概念得到結(jié)果即可.【詳解】全集,集合,,;,故答案為B.【點睛】高考對集合知識的考查要求較低,均是以小題的形式進行考查,一般難度不大,要求考生熟練掌握與集合有關(guān)的基礎(chǔ)知識.縱觀近幾年的高考試題,主要考查以下兩個方面:一是考查具體集合的關(guān)系判斷和集合的運算.解決這類問題的關(guān)鍵在于正確理解集合中元素所具有屬性的含義,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的關(guān)系判斷以及運算8、A【解析】因為2、4是函數(shù)的零點,所以排除B、C;因為時,所以排除D,故選A9、A【解析】先判斷各函數(shù)最小正周期,再確定各函數(shù)在區(qū)間上單調(diào)性,即可選擇判斷.【詳解】最小正周期為,在區(qū)間上單調(diào)遞減;最小正周期為,在區(qū)間上單調(diào)遞減;最小正周期為,在區(qū)間上單調(diào)遞增;最小正周期為,在區(qū)間上單調(diào)遞增;故選:A10、A【解析】由冪函數(shù)的定義解出a,再把點代入解出b.【詳解】∵函數(shù)是冪函數(shù),∴,即,∴點(4,2)在冪函數(shù)的圖象上,∴,故故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、②④【解析】由,可求得的值,可得出,計算出萍蔓延月至月份增長的面積和月至月份增長的面積,可判斷①的正誤;計算出浮萍蔓延個月后的面積和浮萍蔓延個月后的面積,可判斷②的正誤;計算出浮萍蔓延每個月增長率,可判斷③的正誤;利用指數(shù)運算可判斷④的正誤.【詳解】由已知可得,則.對于①,浮萍蔓延月至月份增長的面積為(平方米),浮萍蔓延月至月份增長的面積為(平方米),①錯;對于②,浮萍蔓延個月后的面積為(平方米),浮萍蔓延個月后的面積為(平方米),所以,浮萍蔓延個月后的面積是浮萍蔓延個月后的面積的,②對;對于③,浮萍蔓延第至個月的增長率為,所以,浮萍蔓延每個月增長率相同,都是,③錯;對于④,浮萍蔓延到平方米所經(jīng)過的時間、蔓延到平方米所經(jīng)過的時間的和蔓延到平方米的時間分別為、、,則,,,所以,,所以,浮萍蔓延到平方米所經(jīng)過的時間與蔓延到平方米所經(jīng)過的時間的和比蔓延到平方米所經(jīng)過的時間少,④對.故答案為:②④.12、【解析】由條件可得函數(shù)的單調(diào)性,結(jié)合,分和利用單調(diào)性可解.【詳解】因為,時,,所以在上單調(diào)遞減,又因為為奇函數(shù),且,所以在上單調(diào)遞減,且.當(dāng)時,不等式,得;當(dāng)時,不等式,得.綜上,不等式的解集為.故答案:13、.【解析】將等式兩邊平方得出的值,再利用結(jié)合平面向量的數(shù)量積運算律可得出結(jié)果.【詳解】,,,因此,,故答案為.【點睛】本題考查利用平面向量數(shù)量積來計算平面向量的模,在計算時,一般將平面向量的模平方,利用平面向量數(shù)量積的運算律來進行計算,考查運算求解能力,屬于中等題.14、f【解析】利用三角函數(shù)圖象的平移和伸縮變換即可得正確答案.【詳解】函數(shù)y=sin2x+π得到y(tǒng)=sin再向右平移π4個單位,得到y(tǒng)=故最終所得到的函數(shù)解析式為:fx故答案為:fx15、【解析】通過畫出圖形,可計算出圓心到直線的最短距離,建立不等式即可得到的取值范圍.【詳解】作出圖形,由題意可知,,此時,四邊形即為,而,故,勾股定理可知,而要是得存在點P滿足該條件,只需O到直線的距離不大于即可,即,所以,故的取值范圍是.【點睛】本題主要考查直線與圓的位置關(guān)系,點到直線的距離公式,意在考查學(xué)生的轉(zhuǎn)化能力,計算能力,分析能力,難度中等.16、3【解析】分和兩種情況并結(jié)合分段函數(shù)的解析式求出x的值【詳解】由題意得(1)或(2),由(1)得x=2,與x≤1矛盾,故舍去由(2)得x=3,符合x>1∴x=3故答案為3【點睛】已知分段函數(shù)的函數(shù)值求自變量的取值時,一般要進行分類討論,根據(jù)自變量所在的范圍選用相應(yīng)的解析式進行求解,求解后要注意進行驗證.本題同時還考查對數(shù)、指數(shù)的計算,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)遞減區(qū)間為,遞增區(qū)間;(2).【解析】(1)當(dāng)時,設(shè),根據(jù)指數(shù)函數(shù)和二次函數(shù)的單調(diào)性,結(jié)合復(fù)合函數(shù)的單調(diào)性,即可求解;(2)由題意,函數(shù),分,和三種情況討論,結(jié)合復(fù)合函數(shù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時,,設(shè),則函數(shù)開口向下,對稱軸方程為,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減,又由指數(shù)函數(shù)在上為單調(diào)遞減函數(shù),根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)在單調(diào)遞減,在單調(diào)遞增,即函數(shù)的遞減區(qū)間為,遞增區(qū)間.(2)由題意,函數(shù),①當(dāng)時,函數(shù),根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)在上為單調(diào)遞增函數(shù),此時函數(shù)無最大值,不符合題意;②當(dāng)時,函數(shù),根據(jù)復(fù)合函數(shù)單調(diào)性,可得函數(shù)在在單調(diào)遞增,在單調(diào)遞減,當(dāng)時,函數(shù)取得最大值,即,解得;③當(dāng)時,函數(shù),根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)在在單調(diào)遞減,在單調(diào)遞增,此時函數(shù)無最大值,不符合題意.綜上可得,實數(shù)的值為.【點睛】本題主要考查了指數(shù)函數(shù)的圖象與性質(zhì),以及復(fù)合函數(shù)的單調(diào)性的判定及應(yīng)用,其中解答中熟記指數(shù)函數(shù)的圖象與性質(zhì),二次函數(shù)的性質(zhì),以及復(fù)合函數(shù)的單調(diào)性的判定方法是解答的關(guān)鍵,著重考查推理與運算能力,屬于中檔試題.18、(1);(2).【解析】(1)利用誘導(dǎo)公式化簡==;(2)由誘導(dǎo)公式可得,再利用同角三角函數(shù)關(guān)系求出即可試題解析:(1)(2)∵,∴,又第三象限角,∴,∴點睛:(1)三角函數(shù)式化簡的思路:①切化弦,統(tǒng)一名;②用誘導(dǎo)公式,統(tǒng)一角;③用因式分解將式子變形,化為最簡(2)解題時要熟練運用誘導(dǎo)公式和同角三角函數(shù)基本關(guān)系式,其中確定相應(yīng)三角函數(shù)值的符號是解題的關(guān)鍵.19、(1)(2)【解析】(1)根據(jù)題意可得,從而可求得,再根據(jù)正弦函數(shù)的性質(zhì)結(jié)合整體思想即可得出答案;(2)求出平移后的函數(shù)的解析式,再根據(jù)正余弦函數(shù)的奇偶性即可得出答案.【小問1詳解】解:因為函數(shù)的圖象相鄰兩條對稱軸之間的距離為,所以,所以,所以,所以,當(dāng)時,,所以當(dāng)時,函數(shù)取得最小值,當(dāng)時,函數(shù)取得最大值,所以;【小問2詳解】解:函數(shù)的圖象向左平移個單位后,得到函數(shù),因為為偶函數(shù),所以,所以,又因為,所以.20、(1);(2)【解析】(1)根據(jù)表中數(shù)據(jù)可知,隨著時間的變化,溫度越來越低直至室溫,所以選擇
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 婦幼保健院溫馨就診環(huán)境設(shè)計
- 邊坡植被種植技術(shù)方案
- 湖北工業(yè)大學(xué)《電工電子技術(shù)(上)》2023-2024學(xué)年第二學(xué)期期末試卷
- 河北水利電力學(xué)院《數(shù)控技術(shù)及數(shù)控加工》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海工藝美術(shù)職業(yè)學(xué)院《電子線路設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 平頂山職業(yè)技術(shù)學(xué)院《管理能力與溝通技巧》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川司法警官職業(yè)學(xué)院《無人機通信與導(dǎo)航技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 襄陽職業(yè)技術(shù)學(xué)院《中國文化與遺產(chǎn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴州工商職業(yè)學(xué)院《模擬電子技術(shù)基礎(chǔ)實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 吉林司法警官職業(yè)學(xué)院《獸醫(yī)免疫學(xué)實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)科學(xué)總論小兒遺傳代謝病課件
- 2026小紅書平臺營銷通案
- 品牌設(shè)計報價方案
- 2026屆上海交大附屬中學(xué)高一化學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析
- 公司員工自帶電腦補貼發(fā)放管理辦法
- 2024年地理信息技術(shù)與應(yīng)用能力初級考試真題(一)(含答案解析)
- 初中英語必背3500詞匯(按字母順序+音標(biāo)版)
- 數(shù)據(jù)恢復(fù)協(xié)議合同模板
- 地下礦山職工安全培訓(xùn)課件
- 供熱安全培訓(xùn)課件
- 穿越機組裝教學(xué)課件
評論
0/150
提交評論