版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆上海市北郊高級中學高一上數(shù)學期末調研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù),則是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)2.下列敘述正確的是()A.三角形的內角是第一象限角或第二象限角 B.鈍角是第二象限角C.第二象限角比第一象限角大 D.不相等的角終邊一定不同3.銳角三角形的內角、滿足:,則有()A. B.C. D.4.同時擲兩枚骰子,所得點數(shù)之和為的概率為A. B.C. D.5.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積為()A. B.C. D.6.對于函數(shù)定義域中任意的,,當時,總有①;②都成立,則滿足條件的函數(shù)可以是()A. B.C. D.7.直線L將圓平分,且與直線平行,則直線L的方程是A.BC.D.8.設a,bR,,則()A. B.C. D.9.已知冪函數(shù)的圖象過點,則()A. B.C. D.10.函數(shù)f(x)=logA.(-∞,1) B.(2,+∞)C.(-∞,32) D.(3二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.已知函數(shù),的最大值為3,最小值為2,則實數(shù)的取值范圍是________.12.求過(2,3)點,且與(x-3)2+y2=1相切的直線方程為_____13.設集合,,若,則實數(shù)的取值范圍是________14.已知角的終邊過點(1,-2),則________15.如圖,網格紙上正方形小格的邊長為1,圖中粗線畫出的是某三棱錐的三視圖,則該三棱錐的體積為__________三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知函數(shù).(1)判斷在區(qū)間上的單調性,并用定義證明;(2)判斷奇偶性,并求在區(qū)間上的值域.17.已知函數(shù)的部分圖象如圖所示.(1)寫出函數(shù)f(x)的最小正周期T及ω、φ的值;(2)求函數(shù)f(x)在區(qū)間上的最大值與最小值.18.已知函數(shù)是偶函數(shù)(1)求的值;(2)將函數(shù)的圖像向右平移個單位,再將得到的圖像上各點的橫坐標伸長為原來的4倍(縱坐標不變),得到函數(shù)的圖像,討論在上的單調性19.設函數(shù),其中,且.(1)求的定義域;(2)當時,函數(shù)圖象上是否存在不同兩點,使過這兩點的直線平行于軸,并證明.20.如圖所示,矩形所在平面,分別是的中點.(1)求證:平面.(2)21.已知函數(shù),.(1)求的值.(2)設,,,求的值.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】先求得,再根據余弦函數(shù)的周期性、奇偶性,判斷各個選項是否正確,從而得出結論【詳解】∵,∴=,∵,且T=,∴是最小正周期為偶函數(shù),故選B.【點睛】本題主要考查誘導公式,余弦函數(shù)的奇偶性、周期性,屬于基礎題2、B【解析】利用象限角、鈍角、終邊相同角的概念逐一判斷即可.【詳解】∵直角不屬于任何一個象限,故A不正確;鈍角屬于是第二象限角,故B正確;由于120°是第二象限角,390°是第一象限角,故C不正確;由于20°與360°+20°不相等,但終邊相同,故D不正確.故選B【點睛】本題考查象限角、象限界角、終邊相同的角的概念,綜合應用舉反例、排除等手段,選出正確的答案3、C【解析】根據三角恒等變換及誘導公式化簡變形即可.【詳解】將,變形為則,又,故,即,,因為內角、都為銳角,則,故,即,,所以.故選:C.4、A【解析】本題是一個古典概型,試驗發(fā)生包含的事件是同時擲兩枚骰子,共有6×6種結果,而滿足條件的事件是兩個點數(shù)之和是5,列舉出有4種結果,根據概率公式得到結果.【詳解】由題意知,本題是一個古典概型,試驗發(fā)生包含的事件是同時擲兩枚骰子,共有6×6=36種結果,而滿足條件的事件是兩個點數(shù)之和是5,列舉出有(1,4)(2,3)(3,2)(4,1),共有4種結果,根據古典概型概率公式得到P=.【點睛】古典概型要求能夠列舉出所有事件和滿足條件的事件發(fā)生的個數(shù),本題可以列舉出所有事件,概率問題同其他的知識點結合在一起,實際上是以概率問題為載體5、A【解析】正四棱錐P-ABCD的外接球的球心在它的高上,記為O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面積,故選A.考點:球的體積和表面積6、B【解析】根據函數(shù)在上是增函數(shù),且是上凸函數(shù)判斷.【詳解】由當時,總有,得函數(shù)在上是增函數(shù),由,得函數(shù)是上凸函數(shù),在上是增函數(shù)是增函數(shù),是下凸函數(shù),故A錯誤;在上是增函數(shù)是增函數(shù),是上凸函數(shù),故B正確;在上是增函數(shù),是下凸函數(shù);故C錯誤;在上是減函數(shù),故D錯誤.故選:B7、C【解析】圓的圓心坐標,直線L將圓平分,所以直線L過圓的圓心,又因為與直線平行,所以可設直線L的方程為,將代入可得所以直線L的方程為即,所以選C考點:求直線方程8、D【解析】利用不等式的基本性質及作差法,對結論逐一分析,選出正確結論即可.【詳解】因為,則,所以,即,故A錯誤;因為,所以,則,所以,即,∴,,即,故B錯誤;∵由,因,所以,又因為,所以,即,故C錯誤;由可得,,故D正確.故選:D.9、D【解析】先利用待定系數(shù)法求出冪函數(shù)的解析式,再求的值【詳解】解:設,則,得,所以,所以,故選:D10、A【解析】根據復合函數(shù)的單調性求解即可.【詳解】因為y=log13x為減函數(shù),且定義域為0,+∞.所以x故求y=x2-3x+2的單調遞減區(qū)間即可.又對稱軸為x=32,y=x2-3x+2在故選:A【點睛】本題主要考查了復合函數(shù)的單調區(qū)間,需要注意對數(shù)函數(shù)的定義域,屬于基礎題型.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】畫出函數(shù)的圖像,對稱軸為,函數(shù)在對稱軸的位置取得最小值2,令,可求得,或,進而得到參數(shù)范圍.【詳解】函數(shù)的圖象是開口朝上,且以直線為對稱的拋物線,當時,函數(shù)取最小值2,令,則,或,若函數(shù)在上的最大值為3,最小值為2,則,故答案為:.12、或【解析】當直線沒有斜率時,直線的方程為x=2,滿足題意,所以此時直線的方程為x=2.當直線存在斜率時,設直線的方程為所以故直線的方程為或.故填或.13、【解析】對于方程,由于,解得集合,由,根據區(qū)間端點值的關系列式求得的范圍【詳解】解:對于,由于,,,;∴∵,集合,∴解得,,則實數(shù)的取值范圍是故答案為:14、【解析】由三角函數(shù)的定義以及誘導公式求解即可.【詳解】的終邊過點(1,-2),故答案為:15、1【解析】由圖可知,該三棱錐的體積為V=三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)函數(shù)在區(qū)間上單調遞增,證明見解析(2)函數(shù)為奇函數(shù),在區(qū)間上的值域為【解析】(1)利用定義法證明函數(shù)單調性;(2)先得到定義域關于原點對稱,結合得到函數(shù)為奇函數(shù),利用第一問的單調性求出在區(qū)間上的值域.【小問1詳解】在區(qū)間上單調遞增,證明如下:,,且,有.因為,,且,所以,.于是,即.故在區(qū)間上單調遞增.【小問2詳解】的定義域為.因,所以為奇函數(shù).由(1)得在區(qū)間上單調遞增,結合奇偶性可得在區(qū)間上單調遞增.又因為,,所以在區(qū)間上的值域為.17、(1),,;(2)最小值為,最大值為1.【解析】(1)由函數(shù)的部分圖象求解析式,由周期求出,代入求出的值,可得函數(shù)的解析式;(2)由以上可得,,再利用正弦函數(shù)的定義域和值域,求得函數(shù)的最值.【詳解】(1)根據函數(shù)的部分圖象,可得,解得,,將代入可得,解得;(2)由以上可得,,,,,當時,即,函數(shù)取得最小值為.當時,即,函數(shù)取得最大值為1.【點睛】本題考查三角函數(shù)部分圖象求解析式,考查三角函數(shù)給定區(qū)間的最值,屬于基礎題.18、(1);(2)單調遞減區(qū)間,,單調增區(qū)間.【解析】(1)根據三角函數(shù)奇偶性即可求出的值;(2)根據三角函數(shù)的圖象變換關系求出的解析式,結合函數(shù)的單調性進行求解即可【詳解】(1)∵函數(shù)是偶函數(shù),∴,,又,∴;(2)由(2)知,將的圖象向右平移個單位后,得到,再將得到的圖像上各點的橫坐標伸長為原來的4倍(縱坐標不變),得到,當,,即,時,的單調遞減,當,,即,時,的單調遞增,因此在,的單調遞減區(qū)間,,單調增區(qū)間19、(1)當時,定義域為;當時,定義域為.(2)不存在,證明見解析.【解析】(1)首先根據題意得到,再分類討論解不等式即可.(2)首先根據單調性定義得到函數(shù)在為增函數(shù),從而得到函數(shù)圖像上不存在不同兩點,使過這兩點的直線平行于軸.【詳解】(1)由題知:,①當時,即,則,定義域為.②當時,即,則,定義域為.綜上,當時,定義域為;當時,定義域為.(2)因為,所以函數(shù)的定義域為,任取,且,因為,所以,因為,所以,所以,即,所以,函數(shù)在為增函數(shù),所以函數(shù)圖象上不存在不同兩點,使過這兩點的直線平行于軸.20、(1)見解析;(2)見解析【解析】試題分析:(1)取的中點,連接,構造平行四邊形,證得線線平行,進而得到線面平行;(2)由第一問得到,又因為平面,,進而證得結論解析:(1)證明:取的中點,連接,分別是的中點,,,四邊形是平行四邊形,平面,平面,平面.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手衛(wèi)生規(guī)章管理制度
- 衛(wèi)生室內科管理制度
- 溫泉衛(wèi)生清潔制度
- 中小學衛(wèi)生工作制度
- 衛(wèi)生院資源管理制度
- 衛(wèi)生所醫(yī)保網絡管理制度
- 起居衛(wèi)生管理制度
- 衛(wèi)生院單位預算管理制度
- 衛(wèi)生局公務用車制度
- 衛(wèi)生室定期巡查制度
- 2025年山東省濟南市中考英語真題卷含答案解析
- 2024年陜西藝術職業(yè)學院輔導員考試筆試題庫附答案
- 2025-2030中國銅箔市場產銷規(guī)模分析與未來發(fā)展戰(zhàn)略規(guī)劃研究報告
- 2026年醫(yī)院衛(wèi)生院家庭醫(yī)生簽約服務工作實施方案
- 低空經濟應用場景:創(chuàng)新與挑戰(zhàn)
- 2025醫(yī)療器械安全和性能基本原則清單
- 2025至2030中國電子束焊接設備行業(yè)項目調研及市場前景預測評估報告
- 2025初中英語詞匯3500詞匯表
- 國家電力安全生產課件
- 鉆探施工安全培訓課件
- 家具拆單操作標準及流程指南
評論
0/150
提交評論