版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
海南省五指山中學2023-2024學年高一上數(shù)學期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,共60分)1.函數(shù)與的圖象交于兩點,為坐標原點,則的面積為()A. B.C. D.2.設(shè)函數(shù),則()A.是偶函數(shù),且在單調(diào)遞增 B.是偶函數(shù),且在單調(diào)遞減C.是奇函數(shù),且在單調(diào)遞增 D.是奇函數(shù),且在單調(diào)遞減3.設(shè)定義在上的函數(shù)滿足:當時,總有,且,則不等式的解集為()A. B.C. D.4.總體由編號為01,02,...,19,20的20個個體組成,利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表的第1行第5列和第6列數(shù)字開始由左向右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()7961950784031379510320944316831718696254073892615789810641384975A.20 B.18C.17 D.165.函數(shù)是()A.奇函數(shù),且上單調(diào)遞增 B.奇函數(shù),且在上單調(diào)遞減C.偶函數(shù),且在上單調(diào)遞增 D.偶函數(shù),且在上單調(diào)遞減6.命題“對任意x∈R,都有x2≥1”的否定是()A.對任意x∈R,都有x2<1 B.不存在x∈R,使得x2<1C.存在x∈R,使得x2≥1 D.存在x∈R,使得x2<17.在空間坐標系中,點關(guān)于軸的對稱點為()A. B.C. D.8.已知集合,則函數(shù)的最小值為()A.4 B.2C.-2 D.-49.下列函數(shù)中,既是偶函數(shù),又在區(qū)間上是增函數(shù)的是()A. B.C. D.10.已知點,,,且滿足,若點在軸上,則等于A. B.C. D.11.已知函數(shù)y=(12)x的圖象與函數(shù)y=logax(a>0,A.[?2C.[?812.若冪函數(shù)的圖象過點,則的值為()A.2 B.C. D.4二、填空題(本大題共4小題,共20分)13.計算:_______14.下列命題中正確的是________(1)是的必要不充分條件(2)若函數(shù)的最小正周期為(3)函數(shù)的最小值為(4)已知函數(shù),在上單調(diào)遞增,則15.有下列四個說法:①已知向量,,若與的夾角為鈍角,則;②若函數(shù)的圖象關(guān)于直線對稱,則;③函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;④當時,函數(shù)有四個零點其中正確的是___________(填上所有正確說法的序號)16.已知點角終邊上一點,且,則______三、解答題(本大題共6小題,共70分)17.已知函數(shù)的圖象時兩條相鄰對稱軸之間的距離為,將的圖象向右平移個單位后,所得函數(shù)的圖象關(guān)于y軸對稱.(1)求函數(shù)的解析式;(2)若,求值.18.已知函數(shù)在區(qū)間上的最大值為6,(1)求常數(shù)m的值;(2)若,且,求的值.19.已知函數(shù)(1)若是偶函數(shù),求a值;(2)若對任意,不等式恒成立,求a的取值范圍20.已知,函數(shù)(1)求的定義域;(2)當時,求不等式的解集21.計算下列各題:(1);(2).22.已知函數(shù).求:(1)的值域;(2)的零點;(3)時x的取值范圍
參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】令,解方程可求得,由此可求得兩點坐標,得到關(guān)于點對稱,由可求得結(jié)果.【詳解】令,,解得:或(舍),,或,則或,不妨令,,則關(guān)于點對稱,.故選:A.2、D【解析】利用函數(shù)奇偶性的定義可判斷出函數(shù)的奇偶性,分析函數(shù)解析式的結(jié)構(gòu)可得出函數(shù)的單調(diào)性.【詳解】函數(shù)的定義域為,,所以函數(shù)為奇函數(shù).而,可知函數(shù)為定義域上減函數(shù),因此,函數(shù)為奇函數(shù),且是上的減函數(shù).故選:D.3、A【解析】將不等式變形后再構(gòu)造函數(shù),然后利用單調(diào)性解不等式即可.【詳解】由,令,可知當時,,所以在定義域上單調(diào)遞減,又,即,所以由單調(diào)性解得.故選:A4、D【解析】利用隨機數(shù)表從給定位置開始依次取兩個數(shù)字,根據(jù)與20的大小關(guān)系可得第5個個體的編號.【詳解】從隨機數(shù)表的第1行第5列和第6列數(shù)字開始由左向右依次選取兩個數(shù)字,小于或等于20的5個編號分別為:07,03,13,20,16,故第5個個體編號為16.故選:D.【點睛】本題考查隨機數(shù)表抽樣,此類問題理解抽樣規(guī)則是關(guān)鍵,本題屬于容易題.5、A【解析】根據(jù)函數(shù)奇偶性和單調(diào)性的定義判定函數(shù)的性質(zhì)即可.【詳解】解:根據(jù)題意,函數(shù),有,所以是奇函數(shù),選項C,D錯誤;設(shè),則有,又由,則,,則,則在上單調(diào)遞增,選項A正確,選項B錯誤.故選:A.6、D【解析】根據(jù)含有一個量詞的否定是改量詞、否結(jié)論直接得出.【詳解】因為含有一個量詞的否定是改量詞、否結(jié)論,所以命題“對任意x∈R,都有x2≥1”的否定是“存在x∈R,使得x2<1”.故選:D.【點睛】本題考查含有一個量詞的否定,屬于基礎(chǔ)題.7、C【解析】兩點關(guān)于軸對稱,則縱坐標相同,橫坐標互為相反數(shù),豎坐標互為相反數(shù),由此可直接得出結(jié)果.【詳解】解:兩點關(guān)于軸對稱,則縱坐標相同,橫坐標互為相反數(shù),豎坐標互為相反數(shù),所以點關(guān)于軸的對稱點的坐標是.故選:C.8、D【解析】因為集合,所以,設(shè),則,所以,且對稱軸為,所以最小值為,故選D9、B【解析】先判斷定義域是否關(guān)于原點對稱,再將代入判斷奇偶性,進而根據(jù)函數(shù)的性質(zhì)判斷單調(diào)性即可【詳解】對于選項A,定義域為,,故是奇函數(shù),故A不符合條件;對于選項B,定義域為,,故是偶函數(shù),當時,,由指數(shù)函數(shù)的性質(zhì)可知,在上是增函數(shù),故B正確;對于選項C,定義域為,,故是偶函數(shù),當時,,由對數(shù)函數(shù)的性質(zhì)可知,在上是增函數(shù),則在上是減函數(shù),故C不符合條件;對于選項D,定義域為,,故是奇函數(shù),故D不符合條件,故選:B【點睛】本題考查判斷函數(shù)的奇偶性和單調(diào)性,熟練掌握函數(shù)的性質(zhì)是解題關(guān)鍵10、C【解析】由題意得,∴設(shè)點的坐標為,∵,∴,∴,解得故選:C11、D【解析】由已知中兩函數(shù)的圖象交于點P(?由指數(shù)函數(shù)的性質(zhì)可知,若x0≥2,則0<y由于x0≥2,所以a>1且4a點睛:本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的應(yīng)用,其中解答中涉及到指數(shù)函數(shù)的圖象與性質(zhì)、對數(shù)函數(shù)的圖象與性質(zhì),以及不等式關(guān)系式得求解等知識點的綜合考查,著重考查了學生分析問題和解答問題的能力,本題的解答中熟記指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質(zhì),構(gòu)造關(guān)于a的不等式是解答的關(guān)鍵,試題比較基礎(chǔ),屬于基礎(chǔ)題.12、C【解析】設(shè),利用的圖象過點,求出的解析式,將代入即可求解.【詳解】設(shè),因為的圖象過點,所以,解得:,所以,所以,故選:C.二、填空題(本大題共4小題,共20分)13、【解析】求出的值,求解計算即可.【詳解】故答案為:14、(3)(4)【解析】對于(1)對角取特殊值即可驗證;對于(2)采用數(shù)形結(jié)合即可得到答案;對于(3)把函數(shù)進行化簡為關(guān)于的函數(shù),再利用基本不等式即可得到答案;對于(4)用整體的思想,求出單調(diào)增區(qū)間為,再讓即可得到答案.【詳解】對于(1),當,當,不滿足是的必要條件,故(1)錯誤;對于(2),函數(shù)的最小正周期為,故(2)錯誤;對于(3),,當且僅當?shù)忍柍闪?,故?)正確;對于(4)函數(shù)的單調(diào)增區(qū)間為,若在上單調(diào)遞增,則,又,故(4)正確.故答案為:(3)(4).15、②③【解析】①:根據(jù)平面向量夾角的性質(zhì)進行求解判斷;②:利用函數(shù)的對稱性,結(jié)合兩角和(差)的正余弦公式進行求解判斷即可;③:利用導數(shù)的性質(zhì)、函數(shù)的奇偶性進行求解判斷即可.④:根據(jù)對數(shù)函數(shù)的性質(zhì),結(jié)合零點的定義進行求解判斷即可【詳解】①:因為與的夾角為鈍角,所以有且與不能反向共線,因此有,當與反向共線時,,所以有且,因此本說法不正確;②:因為函數(shù)的圖象關(guān)于直線對稱,所以有,即,于是有:,化簡,得,因為,所以,因此本說法正確;③:因為,所以函數(shù)偶函數(shù),,當時,單調(diào)遞增,即在上單調(diào)遞增,又因為該函數(shù)是偶函數(shù),所以該在上單調(diào)遞減,因此本說法正確;④:,問題轉(zhuǎn)化為函數(shù)與函數(shù)的交點個數(shù)問題,如圖所示:當時,,此時有四個交點,當時,,所以交點的個數(shù)不是四個,因此本說法不正確,故答案為:②③16、【解析】利用任意角的三角函數(shù)的定義,即可求得m值【詳解】點角終邊上一點,,則,故答案為【點睛】本題考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題三、解答題(本大題共6小題,共70分)17、(1)(2)【解析】(1)根據(jù)兩條相鄰對稱軸之間的距離可求得函數(shù)的周期,進而求得,根據(jù)平移之后函數(shù)圖象關(guān)于軸對稱,可得值,從而可得函數(shù)解析式;(2)將所求角用已知角來表示即可求得結(jié)果【小問1詳解】由題意可知,,即,所以,,將的圖象向右平移個單位得,因為的圖象關(guān)于軸對稱,所以,,所以,,因為,所以,所以;【小問2詳解】,所以,,,所以18、(1);(2)【解析】(1)利用二倍角公式以及輔助角公式可得,再利用三角函數(shù)的性質(zhì)即可求解.(2)代入可得,從而求出,再利用誘導公式即可求解.【詳解】(1),因為,則,所以,解得.(2),即,解得,,,所以,,又,所以.19、(1)0(2)【解析】(1)由偶函數(shù)的定義得出a的值;(2)由分離參數(shù)得,利用換元法得出的最小值,即可得出a的取值范圍【小問1詳解】因為是偶函數(shù),所以,即,故【小問2詳解】由題意知在上恒成立,則,又因為,所以,則.令,則,可得,又因為,當且僅當時,等號成立,所以,即a的取值范圍是20、(1)(2)【解析】(1)根據(jù)對數(shù)函數(shù)的真數(shù)大于零得到不等式組,解得即可求出函數(shù)的定義域;(2)當時得到、即可得到與,則原不等式即為,再根據(jù)對數(shù)函數(shù)的單調(diào)性,將函數(shù)不等式轉(zhuǎn)化為自變量的不等式,解得即可,需注意函數(shù)的定義域;【小問1詳解】解:由題意得:,解得,因為,所以,故定義域為【小問2詳解】解:因為,所以,所以,,因為,所以,即從而,解得.故不等式的解集為21、(1);(2).【解析】(1)利用指對冪運算性質(zhì)化簡求值;(2)利用對數(shù)運算性質(zhì)化簡求值.【小問1詳解】原式.【小問2詳解】原式.22、(1);(2)-1,2;(3)【解析】(1)利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 復試管理學基礎(chǔ)筆試題及答案
- 2026年中國汽車制造行業(yè)深度評估研究報告
- 2025年連云區(qū)語文考試題及答案
- 文化創(chuàng)意題庫及答案
- 皮革工藝試題及答案
- 工業(yè)統(tǒng)計基礎(chǔ)試題及答案
- 信貸案例分析試題及答案
- 東莞中考三模試卷及答案
- 新能源汽車電池更換技術(shù)面試指南及答案
- 廣告策劃面試題及創(chuàng)意思維測試含答案
- 電子技術(shù)課程設(shè)計(數(shù)字電子秤)
- 正確認識乙酰膽堿
- GB/T 40047-2021個體防護裝備運動眼面部防護滑雪鏡
- 2023年電大國際法答案
- 前列腺癌根治術(shù)護理查房
- 數(shù)理統(tǒng)計(第三版)課后習題答案
- 2-管道儀表流程圖PID
- 污水的消毒處理課件
- 思想道德與法治課件:第五章 第二節(jié) 吸收借鑒優(yōu)秀道德成果
- 新鄉(xiāng)瑞豐 潤滑油添加劑系列產(chǎn)品技術(shù)改造項目 環(huán)評報告書
- 高速服務(wù)區(qū)給排水工程施工組織方案
評論
0/150
提交評論