版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
濟(jì)南市天橋區(qū)2024年中考一模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.2.如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長度為何?()A.1 B.2 C.2﹣2 D.4﹣23.第24屆冬奧會將于2022年在北京和張家口舉行,冬奧會的項目有滑雪(如跳臺滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質(zhì)地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這5張卡片洗勻后正面向下放在桌子上,從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是()A. B. C. D.4.九年級(2)班同學(xué)根據(jù)興趣分成五個小組,各小組人數(shù)分布如圖所示,則在扇形圖中第一小組對應(yīng)的圓心角度數(shù)是()A. B. C. D.5.把多項式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a(chǎn)=2,b=3 B.a(chǎn)=-2,b=-3C.a(chǎn)=-2,b=3 D.a(chǎn)=2,b=-36.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,7.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點,P是圓上的一點(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.88.如圖,下列各數(shù)中,數(shù)軸上點A表示的可能是()A.4的算術(shù)平方根 B.4的立方根 C.8的算術(shù)平方根 D.8的立方根9.滴滴快車是一種便捷的出行工具,計價規(guī)則如下表:計費(fèi)項目
里程費(fèi)
時長費(fèi)
遠(yuǎn)途費(fèi)
單價
1.8元/公里
0.3元/分鐘
0.8元/公里
注:車費(fèi)由里程費(fèi)、時長費(fèi)、遠(yuǎn)途費(fèi)三部分構(gòu)成,其中里程費(fèi)按行車的實際里程計算;時長費(fèi)按行車的實際時間計算;遠(yuǎn)途費(fèi)的收取方式為:行車?yán)锍?公里以內(nèi)(含7公里)不收遠(yuǎn)途費(fèi),超過7公里的,超出部分每公里收0.8元.
小王與小張各自乘坐滴滴快車,行車?yán)锍谭謩e為6公里與8.5公里,如果下車時兩人所付車費(fèi)相同,那么這兩輛滴滴快車的行車時間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘10.下列計算正確的是(
).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=211.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣312.“a是實數(shù),”這一事件是()A.不可能事件 B.不確定事件 C.隨機(jī)事件 D.必然事件二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平行四邊ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是(把所有正確結(jié)論的序號都填在橫線上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF14.如圖,在正五邊形ABCDE中,AC與BE相交于點F,則∠AFE的度數(shù)為_____.15.如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于y軸與點B,點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE的面積為3,則k的值為_____.16.不等式-2x+3>0的解集是___________________17.如圖,在平行四邊形中,點在邊上,將沿折疊得到,點落在對角線上.若,,,則的周長為________.18.小明把一副含45°,30°的直角三角板如圖擺放,其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠α+∠β等于_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某校運(yùn)動會需購買A、B兩種獎品,若購買A種獎品3件和B種獎品2件,共需60元;若購買A種獎品5件和B種獎品3件,共需95元.(1)求A、B兩種獎品的單價各是多少元?(2)學(xué)校計劃購買A、B兩種獎品共100件,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,設(shè)購買A種獎品m件,購買費(fèi)用為W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式.請您確定當(dāng)購買A種獎品多少件時,費(fèi)用W的值最少.20.(6分)在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B作⊙O的切線BF交CD的延長線于點F.(I)如圖①,若∠F=50°,求∠BGF的大??;(II)如圖②,連接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大?。?1.(6分)隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費(fèi)用由里程費(fèi)和耗時費(fèi)組成,其中里程費(fèi)按x元/公里計算,耗時費(fèi)按y元/分鐘計算(總費(fèi)用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費(fèi)用、行駛里程數(shù)與打車時間如表:時間(分鐘)里程數(shù)(公里)車費(fèi)(元)小明8812小剛121016(1)求x,y的值;(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費(fèi)用為多少?22.(8分)先化簡,然后從-2≤x≤2的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.23.(8分)如圖1所示,點E在弦AB所對的優(yōu)弧上,且BE為半圓,C是BE上的動點,連接CA、CB,已知AB=4cm,設(shè)B、C間的距離為xcm,點C到弦AB所在直線的距離為y1cm,A、C兩點間的距離為y2cm.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1、y2歲自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小明的探究過程,請補(bǔ)充完整.按照下表中自變量x的值進(jìn)行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應(yīng)值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),并畫出函數(shù)y1、y2的圖象;結(jié)合函數(shù)圖象,解決問題:①連接BE,則BE的長約為cm.②當(dāng)以A、B、C為頂點組成的三角形是直角三角形時,BC的長度約為cm.24.(10分)已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).(1)求證:方程有兩個不相等的實數(shù)根;(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.25.(10分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.26.(12分)如圖,數(shù)軸上的點A、B、C、D、E表示連續(xù)的五個整數(shù),對應(yīng)數(shù)分別為a、b、c、d、e.(1)若a+e=0,則代數(shù)式b+c+d=;(2)若a是最小的正整數(shù),先化簡,再求值:a+1a-2(3)若a+b+c+d=2,數(shù)軸上的點M表示的實數(shù)為m(m與a、b、c、d、e不同),且滿足MA+MD=3,則m的范圍是.27.(12分)計算:-2-2-+0
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】
根據(jù)軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內(nèi),把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【題目詳解】解:A.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;B.不是軸對稱圖形,是中心對稱圖形,故不符合題意;C.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;D.既是軸對稱圖形又是中心對稱圖形,故符合題意.故選D.【題目點撥】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關(guān)鍵.2、C【解題分析】
先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計算出PQ即可.【題目詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點分別為△ACF、△CEF的內(nèi)心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內(nèi)角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過點P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點P是△ACF的內(nèi)心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【題目點撥】本題是三角形的內(nèi)切圓與內(nèi)心,主要考查了三角形的內(nèi)心的特點,三角形的全等,解本題的關(guān)鍵是知道三角形的內(nèi)心的意義.3、B【解題分析】
先找出滑雪項目圖案的張數(shù),結(jié)合5張形狀、大小、質(zhì)地均相同的卡片,再根據(jù)概率公式即可求解.【題目詳解】∵有5張形狀、大小、質(zhì)地均相同的卡片,滑雪項目圖案的有高山滑雪和單板滑雪2張,∴從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是.故選B.【題目點撥】本題考查了簡單事件的概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、C【解題分析】試題分析:由題意可得,第一小組對應(yīng)的圓心角度數(shù)是:×360°=72°,故選C.考點:1.扇形統(tǒng)計圖;2.條形統(tǒng)計圖.5、B【解題分析】分析:根據(jù)整式的乘法,先還原多項式,然后對應(yīng)求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點睛:此題主要考查了整式的乘法和因式分解的關(guān)系,利用它們之間的互逆運(yùn)算的關(guān)系是解題關(guān)鍵.6、A【解題分析】
首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【題目詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【題目點撥】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關(guān)鍵.7、B【解題分析】
連接OP、OA,根據(jù)垂徑定理求出AQ,根據(jù)勾股定理求出OQ,計算即可.【題目詳解】解:由題意得,當(dāng)點P為劣弧AB的中點時,PQ最小,
連接OP、OA,由垂徑定理得,點Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.【題目點撥】本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關(guān)鍵.8、C【解題分析】
解:由題意可知4的算術(shù)平方根是2,4的立方根是<2,8的算術(shù)平方根是,2<<3,8的立方根是2,
故根據(jù)數(shù)軸可知,
故選C9、D【解題分析】
設(shè)小王的行車時間為x分鐘,小張的行車時間為y分鐘,根據(jù)計價規(guī)則計算出小王的車費(fèi)和小張的車費(fèi),建立方程求解.【題目詳解】設(shè)小王的行車時間為x分鐘,小張的行車時間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.【題目點撥】本題考查列方程解應(yīng)用題,讀懂表格中的計價規(guī)則是解題的關(guān)鍵.10、D【解題分析】分析:根據(jù)完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術(shù)平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數(shù)冪的除法以及算術(shù)平方根的計算,掌握完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術(shù)平方根的定義是解題的關(guān)鍵.11、B【解題分析】
先變形,再整體代入,即可求出答案.【題目詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【題目點撥】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關(guān)鍵.12、D【解題分析】是實數(shù),||一定大于等于0,是必然事件,故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、①②④【解題分析】試題解析:①∵F是AD的中點,∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此選項正確;延長EF,交CD延長線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF錯誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此選項正確.考點:1.平行四邊形的性質(zhì);2.全等三角形的判定與性質(zhì);3.直角三角形斜邊上的中線.14、72°【解題分析】
首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【題目詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【題目點撥】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵15、.【解題分析】
由AE=3EC,△ADE的面積為3,可知△ADC的面積為4,再根據(jù)點D為OB的中點,得到△ADC的面積為梯形BOCA面積的一半,即梯形BOCA的面積為8,設(shè)A(x,),從而表示出梯形BOCA的面積關(guān)于k的等式,求解即可.【題目詳解】如圖,連接DC,∵AE=3EC,△ADE的面積為3,∴△CDE的面積為1.∴△ADC的面積為4.∵點A在雙曲線y=的第一象限的那一支上,∴設(shè)A點坐標(biāo)為(x,).∵OC=2AB,∴OC=2x.∵點D為OB的中點,∴△ADC的面積為梯形BOCA面積的一半,∴梯形BOCA的面積為8.∴梯形BOCA的面積=,解得.【題目點撥】反比例函數(shù)綜合題,曲線上點的坐標(biāo)與方程的關(guān)系,相似三角形的判定和性質(zhì),同底三角形面積的計算,梯形中位線的性質(zhì).16、x<【解題分析】
根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【題目詳解】移項,得:-2x>-3,系數(shù)化為1,得:x<,故答案為x<.【題目點撥】本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.17、6.【解題分析】
先根據(jù)平行線的性質(zhì)求出BC=AD=5,再根據(jù)勾股定理可得AC=4,然后根據(jù)折疊的性質(zhì)可得AF=AB=3,EF=BE,從而可求出的周長.【題目詳解】解:∵四邊形是平行四邊形,∴BC=AD=5,∵,∴AC===4∵沿折疊得到,∴AF=AB=3,EF=BE,∴的周長=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案為6.【題目點撥】本題考查了平行四邊形的性質(zhì),勾股定理,折疊的性質(zhì),三角形的周長計算方法,運(yùn)用轉(zhuǎn)化思想是解題的關(guān)鍵.18、210°【解題分析】
根據(jù)三角形內(nèi)角和定理得到∠B=45°,∠E=60°,根據(jù)三角形的外角的性質(zhì)計算即可.【題目詳解】解:如圖:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案為:210°.【題目點撥】本題考查的是三角形的外角的性質(zhì)、三角形內(nèi)角和定理,掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)A、B兩種獎品的單價各是10元、15元;(2)W(元)與m(件)之間的函數(shù)關(guān)系式是W=﹣5m+1,當(dāng)購買A種獎品75件時,費(fèi)用W的值最少.【解題分析】
(1)設(shè)A種獎品的單價是x元、B種獎品的單價是y元,根據(jù)題意可以列出相應(yīng)的方程組,從而可以求得A、B兩種獎品的單價各是多少元;(2)根據(jù)題意可以得到W(元)與m(件)之間的函數(shù)關(guān)系式,然后根據(jù)A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,可以求得m的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)即可解答本題.【題目詳解】(1)設(shè)A種獎品的單價是x元、B種獎品的單價是y元,根據(jù)題意得:解得:.答:A種獎品的單價是10元、B種獎品的單價是15元.(2)由題意可得:W=10m+15(100﹣m)=﹣5m+1.∵A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,∴m≤3(100﹣m),解得:m≤75∴當(dāng)m=75時,W取得最小值,此時W=﹣5×75+1=2.答:W(元)與m(件)之間的函數(shù)關(guān)系式是W=﹣5m+1,當(dāng)購買A種獎品75件時,費(fèi)用W的值最少.【題目點撥】本題考查了一次函數(shù)的應(yīng)用、二元一次方程組的應(yīng)用、一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用一次函數(shù)的性質(zhì)解答.20、(I)65°;(II)72°【解題分析】
(I)如圖①,連接OB,先利用切線的性質(zhì)得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四邊形內(nèi)角和可計算出∠AOB=130°,然后根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和計算出∠1=∠A=25°,從而得到∠2=65°,最后利用三角形內(nèi)角和定理計算∠BGF的度數(shù);(II)如圖②,連接OB,BO的延長線交AC于H,利用切線的性質(zhì)得OB⊥BF,再利用AC∥BF得到BH⊥AC,與(Ⅰ)方法可得到∠AOB=144°,從而得到∠OBA=∠OAB=18°,接著計算出∠OAH=54°,然后根據(jù)圓周角定理得到∠BDG的度數(shù).【題目詳解】解:(I)如圖①,連接OB,∵BF為⊙O的切線,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如圖②,連接OB,BO的延長線交AC于H,∵BF為⊙O的切線,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,與(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【題目點撥】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理.21、(1)x=1,y=;(2)小華的打車總費(fèi)用為18元.【解題分析】試題分析:(1)根據(jù)表格內(nèi)容列出關(guān)于x、y的方程組,并解方程組.
(2)根據(jù)里程數(shù)和時間來計算總費(fèi)用.試題解析:(1)由題意得,解得;(2)小華的里程數(shù)是11km,時間為14min.則總費(fèi)用是:11x+14y=11+7=18(元).答:總費(fèi)用是18元.22、,當(dāng)x=0時,原式=(或:當(dāng)x=-1時,原式=).【解題分析】
先根據(jù)分式混合運(yùn)算的法則把原式進(jìn)行化簡,再選取合適的x的值代入進(jìn)行計算即可.【題目詳解】解:原式=×=.x滿足﹣1≤x≤1且為整數(shù),若使分式有意義,x只能取0,﹣1.當(dāng)x=0時,原式=﹣(或:當(dāng)x=﹣1時,原式=).【題目點撥】本題考查分式的化簡求值,化簡的過程中要注意運(yùn)算順序和分式的化簡.化簡的最后結(jié)果分子、分母要進(jìn)行約分,注意運(yùn)算的結(jié)果要化成最簡分式或整式.23、(1)詳見解析;(2)詳見解析;(3)①6;②6或4.1.【解題分析】
(1)由題意得出BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,由勾股定理得出BD=BC2-CD2≈0.9367(cm),得出AD=AB(2)描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象即可;(3)①∵BC=6時,CD=AC=4.1,即點C與點E重合,CD與AC重合,BC為直徑,得出BE=BC=6即可;②分兩種情況:當(dāng)∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6;當(dāng)∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6,由圖象可得:BC=4.1.【題目詳解】(1)由表中自變量x的值進(jìn)行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應(yīng)值知:BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,如圖1所示:∵CD⊥AB,∴BD=BC2-∴AD=AB+BD=4+0.9367=4.9367(cm),∴AC=CD2補(bǔ)充完整如下表:(2)描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象如圖2所示:(3)①∵BC=6cm時,CD=AC=4.1cm,即點C與點E重合,CD與AC重合,BC為直徑,∴BE=BC=6cm,故答案為:6;②以A、B、C為頂點組成的三角形是直角三角形時,分兩種情況:當(dāng)∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6cm;當(dāng)∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6cm,由圖象可得:BC=4.1cm;綜上所述:BC的長度約為6cm或4.1cm;故答案為:6或4.1.【題目點撥】本題是圓的綜合題目,考查了勾股定理、探究試驗、函數(shù)以及圖象、圓的對稱性、直角三角形的性質(zhì)、分類討論等知識;本題綜合性強(qiáng),理解探究試驗、看懂圖象
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建立健全部門業(yè)務(wù)合規(guī)管理制度
- 工藝技術(shù)、質(zhì)量管理程序制度
- 【答案】《認(rèn)知神經(jīng)科學(xué)常用技術(shù)及原理》(北京師范大學(xué))章節(jié)期末慕課答案
- 廣東創(chuàng)新科技職業(yè)學(xué)院《保險精算學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 安徽警官職業(yè)學(xué)院《紡織品設(shè)計學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《健康服務(wù)與管理技能一》2023-2024學(xué)年第二學(xué)期期末試卷
- 包頭輕工職業(yè)技術(shù)學(xué)院《液壓傳動與控制》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東職業(yè)技術(shù)學(xué)院《人造板工藝學(xué)實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽建筑大學(xué)《風(fēng)景園林構(gòu)成藝術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東外事職業(yè)大學(xué)《經(jīng)濟(jì)管理視角下的婚姻家庭法》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025大模型安全白皮書
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫及1套參考答案詳解
- 工程款糾紛專用!建設(shè)工程施工合同糾紛要素式起訴狀模板
- 2026湖北武漢長江新區(qū)全域土地管理有限公司招聘3人筆試備考題庫及答案解析
- 110(66)kV~220kV智能變電站設(shè)計規(guī)范
- (正式版)DB44∕T 2784-2025 《居家老年人整合照護(hù)管理規(guī)范》
- 2025年美國心臟病協(xié)會心肺復(fù)蘇和心血管急救指南(中文完整版)
- 1、湖南大學(xué)本科生畢業(yè)論文撰寫規(guī)范(大文類)
- 基于多源數(shù)據(jù)融合的深圳市手足口病時空傳播模擬與風(fēng)險預(yù)測模型構(gòu)建及應(yīng)用
- 咯血的急救及護(hù)理
- 2025初三歷史中考一輪復(fù)習(xí)資料大全
評論
0/150
提交評論