《綠色未來網(wǎng)絡(luò)-網(wǎng)絡(luò)能源效率白皮書》-56正式版_第1頁
《綠色未來網(wǎng)絡(luò)-網(wǎng)絡(luò)能源效率白皮書》-56正式版_第2頁
《綠色未來網(wǎng)絡(luò)-網(wǎng)絡(luò)能源效率白皮書》-56正式版_第3頁
《綠色未來網(wǎng)絡(luò)-網(wǎng)絡(luò)能源效率白皮書》-56正式版_第4頁
《綠色未來網(wǎng)絡(luò)-網(wǎng)絡(luò)能源效率白皮書》-56正式版_第5頁
已閱讀5頁,還剩51頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

NETWORKENERGYEFFICIENCY

byNGMNAlliance

Version:

1.0

Date:

03.10.2021

DocumentType:

FinalDeliverable(approved)

ConfidentialityClass:

P-Public

Project:

GreenFutureNetworks

Editor/Submitter:

JohanvonPerner(Huawei),VasilisFriderikos(KCL)

Contributors:

JavanErfanian,BellCanada

JianhuaLiu,ChinaMobile

SaimaAnsari,DeutscheTelekom

DanielDianat,Ericsson

DavidLópez-Pérez,Huawei

JohanvonPerner,Huawei

VasislisFriderikos,MischaDohler,King'sCollegeLondon(KCL)

LjupcoJorguseski,TNONL

EmreBilgehanGedik,KorhanYaman,G?khanKALEM,

Turkcell

AnaGalindoSerrano,MariaOikonomakou,Orange

GaryLi,WilliamRedmond,Intel

Marie-PauleOdini,HPE

Approvedby/Date:

NGMNBoard,4thNovember2021

NGMNe.V.

Gro?erHasenpfad30?60598Frankfurt?Germany

Phone+4969/9074998-0?Fax+4969/9074998-41

TheinformationcontainedinthisdocumentrepresentsthecurrentviewheldbyNGMNe.V.ontheissuesdiscussedasofthedateofpublication.Thisdocumentisprovided“asis”withnowarrantieswhatsoeverincludinganywarrantyofmerchantability,non-infringement,orfitnessforanyparticularpurpose.Allliability(includingliabilityforinfringementofanypropertyrights)relatingtotheuseofinformationinthisdocumentisdisclaimed.Nolicense,expressorimplied,toanyintellectualpropertyrightsaregrantedherein.Thisdocumentisdistributedforinformationalpurposesonlyandissubjecttochangewithoutnotice.Readersshouldnotdesignproductsbasedonthisdocument.

?2021NextGenerationMobileNetworkse.V.Allrightsreserved.NopartofthisdocumentmaybereproducedortransmittedinanyformorbyanymeanswithoutpriorwrittenpermissionfromNGMNe.V.

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page2(55)

CONTENTS

1

ExecutiveSummary

5

2IntroductionandPurposeofDocument

8

2.1

Introduction

8

3

Definitions

10

4

EnergyEfficiency

11

4.1

RANSiteOverviewfromanEnergyPerspective

12

5HowtoDecreaseEnergyConsumption

14

5.1

BaseStationHardware

15

5.1.1

VirtualizationofRAN

17

5.2

ProcessorandNetworkServerPowerEfficiencyImprovement

18

5.2.1

CPUPowerManagement

19

5.2.2

VirtualizationTechnology

21

5.2.3

AcceleratorUse

21

5.2.4

InstructionSetArchitectureImprovements

21

5.2.5

WorkloadProfilingandOptimization

22

5.3

Software&Functions

22

5.3.1

SleepModeFunctions

22

5.3.2

SymbolShutdown

28

5.3.3

ChannelShutdown

29

5.3.4

SparseAntennaArrays

29

5.3.5

CarrierShutdown

30

5.3.6

NetworkEnergySavingUsingArtificialIntelligence

30

5.3.7

NetworkDesign

31

5.4

ArtificialIntelligence

32

5.4.1

AIinMobileTelecommunications

33

5.4.2

EnergySavingsThroughArtificialIntelligence

35

5.4.3

EnergyConsumptionofAI

36

5.5

Terminal’sImpactonNetworkEfficiency

41

5.6

Sunsetof2G/3G

42

6EnergyEfficiencyinTechnicalSite

44

6.1

TechnicalSiteCooling

44

6.1.1

FreeCooling

45

6.1.2

LiquidCooling

45

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021

Page3(55)

6.1.3

AIforTechnicalSiteManagement

46

6.1.4

HeatReuse

47

6.2

NextGenerationUninterruptiblePowerSupply

47

7

ConclusionsandRecommendations

49

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page4(55)

1EXECUTIVESUMMARY

EnergyconsumptionofmobilenetworksisakeyconcernfortheoperatorsasitnotonlyleadstoanincreaseintheOPEXbuthasanimpactonCO?emissionsaswell.Therefore,MobileNetworkOperators(MNOs)arefocusingonfindingthebestpossiblewaystoreducetheenergyconsumptionoftheirnetworkseitherbyusinglatesttechnologyorbyoptimizingtheuseoftheactiveandpassivecomponents.Introductionof5Gbringsmoreenergyconsumptionduetothedeploymentofadditionalradiosinnewfrequencylayersbutontheotherhandthe5Gtechnologyismoreenergyefficientthanitspredecessors,thankstotheimprovedspectrumefficiencywhichcomesalongwithhigherMultipleInputMultipleOutput(MIMO)schemesanditsultra-leandesign.Tosupporttherisinguseofcellularconnectivityinthe5Gera,whilereducingenergyconsumptionandemissionsonaper-bitbasisinthecontextofanabsolutereductioninemissions,themobilenetworksneedtobemoreefficient.OnewaytoreducetheseemissionscouldbetheuseofrenewableenergysourceswhichiscoveredintheNGMN“SustainabilityChallengesandInitiativesinMobileNetworks”WhitePaper

[1].

Tomaximizetheend-to-endenergyperformance,itwillbecrucialforMNOstoadoptadifferentapproachtowardsnetworkplanning,deployment,andmanagement.

Leveragingthespectralefficiencyofthe5Gairinterfaceanditsmoreadvancedsleepmodesisimportant,butfurtherefficienciescanbecombinedacrossthreelevels–thebasestationequipmentlevel,sitelevelandnetworklevel.Thereisawiderangeoftechniquesthatcanbeusedacrossthesethreelevelsofnextgenerationnetworkoperation,whichareexploredinthisdocument.Sincethebasestationscoverthelargestpartoftheenergyconsumptioninamobilenetwork,thisWhitePaperdetailsvarioustechniquesforautomaticwake-up/sleepmodesincludingshutdownonsymbol,channelorcarrierbasisandusageofefficientpoweramplifierscombinedwithmassiveMIMO.Sincethetrafficloadvariesduringtheday,itisimportanttodeploysleepmodefunctionsthatshutoffhardwarewhentheloadislow.Symbolshutdownisthemostimportantfunctiontoaddressthisasitsavesapproximate10%energyinalessloadedscenario.Completecarriershutdowncanalsobeusedbuthaslessgainandmighthaveimpactonuserexperience.ThisWhitePaperexploresdifferentsleepmodefunctionsindetail.

Virtualizationhasbeengainingalotofattentioninthemobileindustry,whichmeansthedecouplingofsoftwarefromhardwaretherebyenablingmobileoperatorstodevelopanddeployservicesquickly.Thisalsohelpsintheagiledeploymentofthenetworksandreduces

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page5(55)

thedependencyonproprietaryhardware.VirtualRadioAccessNetwork(RAN)isbasedonCommercialOff-The-Shelf(COTS)hardware,suchasGeneral-PurposeProcessors(GPP)andstandardEthernetNetworkInterfaceCards(NICs).Withtheadvancementsdeliveredinmodernserverplatforms,workloadswithinthewirelessandwirelinenetworkscanbeservedwith(COTS)serverscombinedwithhardwareacceleratorsforoff-loadingheavybasebandprocessing,whileatthesametime,powersavingmodescanbeachievedwithoutcompromisingthestricttelecomgradedeterminismrequirements.

Forthesitelevel,techniquesrangingfromusingrenewableenergyforon-gridandoff-gridsites,smartbatteries,powerefficientpowersuppliesareexplained.FreeandliquidcoolingareseenasanimportantsolutionintechnicalsitesasITequipmentinindoorsitesrequirecoolingsolutionswhichcurrentlycanrepresentupto50%ofthenetworkenergyconsumption.Atnetworklevel,flexiblecooperationbetween5GandLTEisnecessarytodelivertherightamountofcapacityatthelowestpracticalpowerlevelinordertoplanthenetworkoperationbasedonenergyperformance.

MassiveMIMOisakeytechnologyforimprovingenergyperformanceasitallowsantennaarraystofocusnarrowbeamstowardstheuserstherebyincreasingthespectralefficiency.5GtogetherwithmassiveMIMOisthreetofivetimesmorespectrumefficientthan4Gdeployedwithtraditionalradiosolution.Furthermore,itisimportanttoselectthebestantennaconfigurationdependingonthescenarioinordertoachievebestenergyperformance.Betterscalingofenergyconsumptioncanbeachievedbyswitchingoffpartsofthetransmittersatlowertrafficload.

Thedevicesidewillbeimportanttoosincetheperformanceofthedevicewillimpacttheoverallnetworkperformance.Thedevicesignalstrengthreceiversensitivityhasanimpactontheenergyperformance.Withbettersensitivity,higherthroughputandlessre-transmissionareneededwhichmeansthatthebasestationcanuselesspower.

Manyenergysavingsolutionsmentionedinthisdocumenthavealreadybeenimplementedinmobilenetworks.However,theseadvancementsinenergyefficiencywillnotbesufficientasforecastspointtoasignificantriseinenergyconsumptionoverthenextcoupleofyearsduetoconsiderableincreaseintrafficacrossavastrangeofusecases,newtechnologiesandspectrum,greatdealofconnections,andnetworkdensification.Here,ArtificialIntelligence(AI)couldplayanimportantrole.Bypredictingandlearningthetrafficbehaviour,AIalgorithms

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page6(55)

definetheactivation/deactivationofsleepmodefunctionalityandsiteenergymanagementwithoutimpactingtheoverallperformanceincludingQualityofExperience(QoE).AIisstillinanearlyphaseandmoredevelopmentandresearchisneededtoreachitsfullpotential.AIbasedenergysavingsolutionscangreatlyincreasetheenergyperformanceofcellularnetworks.

ThisWhitePaperalsopresentsamethodologyoncalculatingtheenergyconsumptionofAI.ItisbasedonanapproximationwhichcanberefineddependingonthespecificAIarchitectureandusecase.Also,theanalysisisonlyconductedforacanonicalconfigurationofaCNN,i.e.,oneconvolutional,onepoolingandonefullyconnectedlayer.Thechainingofseveralconvolutionallayersscalestheenergyconsumptionlinearly.SimilarenergycalculationmethodologiesareapplicabletoRecurrentNeuralNetworks(RNNs),GenerativeAdversarialNetworks(GANs)andDeepReinforcementLearningbutomittedhereforthesakeofbrevity.AdetailedanalysiscontainingthebenefitsofusingAI,itsimpactonthenetwork,applicableareas,standardization,maturity,andchallengesarealsolisted.

Withoutthesebestpracticesmentionedabove,a5Gnetworkdespiteimprovedbit/joulepowerconsumption–couldtypicallyusemorepowerthana4Gonewithsimilarcoveragearea,becauseofthegreaterdensityofbasestationswhenhigherfrequencyisused.Byadoptingthefullrangeofpowerandsiteoptimisationtechniquesincurrentandfuturenetworks,mobileoperatorscanreduceoratleastkeeptheenergyconsumptionstableeveninadensernetwork.

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page7(55)

2INTRODUCTIONANDPURPOSEOFDOCUMENT

2.1Introduction

InNGMN5GWhitePaper1

[2],

publishedatthebeginningof2015,wesetagoalofanimprovementinenergyefficiencybyafactorof2000within10years,suchthata1000timesprojectedincreaseintrafficcanbecarried,usinghalftheamountofenergyconsumptionrequiredatthetime.Otherssetatargetofatleast100timesimprovementofcapacity,comparedto4G.The5Gsystemissignificantlymoreenergyefficientthanthepreviousgenerations,thoughstillinanearlyphaseonitspathtoachievetherequiredtargets.Furthermore,theend-to-endincreaseinenergyefficiencyshouldfocusonsustainabilityandenvironmentaltargets,towardscarbonneutrality.

Manytrendsarecontributingtotherisinguseofdatatransmittedoverfixedandmobilenetworks.Changesinthewaypeoplework,playandcommunicatehavebeenenabledbymoderntechnology,andcontinuetodriveitsusage.Cellulardatatrafficisprojectedtogrowby6timesbetween2018and2024inemergingeconomies,andby3timesindevelopedmarketsoverthesameperiod

[3].

By2025thereareforecasttobe100billionconnections,including40billionsmartdevices.

Figure1:TrafficGrowth,AnalysisMason2020

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page8(55)

Inordertomeettheseaggressivetargets,astepchangeinenergyefficiencyisneeded.5Gwillplayacriticalroleinaddressingthischallenge.Themostchallengingelementsofamobilenetwork,inenergyconsumptionterms,aretheradiobasestationswhichrepresentabout57percentoftheconsumedenergy

[3].

LongTermEvolution(LTE)networksthatarehighlyloadedhavea20to30percentaverageuseoftheairinterface.Furthermore,approximately20percentofthebasestationscarry80percentofthetraffic,thereforethereareseveralopportunitiestoimprovetheenergyefficiencyofthebasestations.Thiscanbedonebyreducingthepowerconsumptionwhennodataisneededtobetransmittedandincreasehardwareefficiency,especiallywhentransmissionpowerisbelowmaximum.

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page9(55)

3DEFINITIONS

ThroughoutthisWhitePaper,thefollowingpowerandenergyrelateddefinitionsareused:

Powerconsumption:AmountofenergythatistransferredorconvertedperunittimeiscalledpowerconsumptionanditisexpressedinSIunitasWatt[W].Poweriscalculatedbymultiplyingvoltage[V]andcurrent[I].OtherunitsthanWattareJoules/sorVolt-Ampere[V.A](1V.A=1W).

EnergyConsumption:AmountofpowerusedoveratimeperiodiscalledenergyconsumptionanditisexpressedinSIunitasWattSecond[Ws]orJoules[J].Normallyinelectricitybillskilowatthour[kWh]isused(1Ws=1J,1Wh=3600Ws=3600J).

PowerEfficiency:Theproducedpowerofaunitvstheconsumedpowerforproducingtheoutputpowerperunittimeiscalledpowerefficiencyandnormallyitispresentedaspercentage[%].PowerEfficiency=(OutputPower/InputPower)x100[%].

EnergyPerformance:Theratiobetweentheproducedtaskorworkandtheconsumedpowerforproducingthistaskorworkoveratimeperiodiscalledenergyperformance.ThetaskorworkcouldbeanythingandintelecommunicationitcanforexamplebethedeliveredbitstoaUserEquipment(UE).Inthiscasetheunitcouldbeforexample[Mbits/kWh]or[bits

Wh]or[Mbits/Joules].SincetheelectricitybillsforoperatorsarenormallypresentedinKWhandtheworkcanbeexpressedasdeliveringMbitstoauseritwouldbemoreconvenienttoexpresstheunitas[Mbits/KWh].

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page10(55)

4ENERGYEFFICIENCY

Theenergyefficiencyin5Gsystemscanbeattributedtomultipleadvancements.Theenhancementsindatatransmission,efficiencyincontrolmessagingandsignalling,andabilitytousesleepmodebasedontrafficandloadconditions,areamongthecapabilitiesbydesign.Furthermore,thegranulararchitecture,andincreasingdisaggregationandcloudnativearchitectureandoperation,withvirtualizationandsoftwarization,increaseagilityandreducefootprint.Thispathtowardsintelligentanddynamicorchestration,programmability,lifecyclemanagement,andfullautomation,hasgreatpotentialtobeleveragedtowardsourgoals.Inaddition,products,anddeploymentandoperationalstrategies,havealreadyfocussedoninnovativewaystoadvanceenergyefficiency.

Despitetheseadvancementsinenergyefficiency,theforecastspointtoasignificantincreaseinenergyconsumption,andtherebyinCO?emissions,intheabsenceofactiveintervention,overthenextseveralyears.Thisisduetoaconsiderableincreaseintrafficacrossavastrangeofusecases,newtechnologiesandspectrum,greatdealofconnections,anddensification.Someofthesefactorsneedtobeevaluatedandoptimized,andultimatelyleadtotheneedforintelligentMachineLearning(ML)-basedoperation.Forexample,smallcells,bynature,introduceefficiencythroughcarryingtrafficatlowerenergyconsumption.However,thiscanhaveareverseeffectwithincreasingdensificationandinterference,withoutintelligentdynamicplanningandallocation.Similarly,massiveMultipleInputMultipleOutput(MIMO)hasthepotentialtoincreaseefficiency,intermsoftrafficperunitofenergyconsumption,ifbalancedagainstthecomplexityandconsumptionitintroduces.Trade-offsmayneedtobeconsideredtooptimizeandmaintaindesigngoals.

Advancementinequipmentpowerefficiencyandnetworkenergyperformancemustbeconsideredfromanend-to-endperspective.Thesecanbroadlyinclude:

Specificationsanddesign,suchasthoserelatedtodatatransmission,signalling,sleepmodes,distributedarchitecture,cloud,andre-configurableRadioAccessNetwork(RAN)andEdge.

AI-drivencognitiveandautonomousarchitectureandoperation,thatsupportenergyefficientdynamicplanning,deployment,resourceallocation,monitoringandoptimization,shutdowns,etc.

Powerefficiencyinequipment,devices,boards,andsiteordatacentrecooling,etc.

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page11(55)

Energyharvestingandtransfer,andefficiencyachievedfromcirculareconomy.

Indirectresourcessuchasexternallogistics,andendofequipmentlife.

Ecosystem,regulatory,andsupply-chaincollaborativefocus,awareness,andorganizationalalignment.

MobileNetworkOperators(MNOs),theirpartners,andtheentireecosystemwillnotachievethesustainabilitytargets,withoutanend-to-endcollaborative,committedandorchestratedeffort.Atitshighestlevel,thegoalinvolvestheinter-connectedpillarsofachievingdigitaltransformationwithfull5Gandsubsequently6Grealization,sustainability,andsocialresponsibility.Withthewideandgrowingrangeofusecases,particularlyforautomatedindustries,agreatimpactonothersectorsiswellexpectedandarticulated.

4.1RANSiteOverviewfromanEnergyPerspective

Aradioaccessnetwork(RAN)consistsofalargenumberofsites,whichtypicallyaccommodatetwotypesofequipment:siteinfrastructureequipment(site)andmainequipment(basestation).SiteinfrastructuretypicallyconsistsofrectifiersforconvertingACpowertoDCpower,powerbackupequipment(e.g.,batteries)andotherequipmentsuchasairconditionersforcooling.Themainequipmentisthebasestationequipmentinthecabinet,typicallybasebandunitandradiounits.Fromthebasestation,dataistransmittedovertheairinterface(viaradio)totheuserterminal.

Figure2

providesanillustrationofthisandthetypicalequipmentinvolved,anditalsoillustratestheenergyflowfromthemainACinputfromthegrid,viaDCpowerconversion,deliverytothemainequipment(basestation),conversiontocabinet-toppowerbythebasestation,andfinallytransmissionovertheairinterfacetotheuserterminal.Asshowninthefigure,theenergyflowcanbedividedintothreestages:

Siteinfrastructure:fromtheACmainsupplytotheDCpowersupplyforthebasestation.Theenergyefficiencyofthesiteinfrastructure,SiteEE,canbemeasuredbydividingtheDCinputpowerofthebasestation(PBS)bytheACinputpowerofthesite(PAC).Thismeasureistheinverseofthewell-knownPUE(PowerUsageEffectiveness),whichiscommonlyusedfordatacentres.

Basestation:fromtheDCpowerinput(PBS)tothecabinet-toppoweroutputofthebasestationantenna(Poutput).Thepowerefficiencyofabasestationcanbemeasuredbydividingthecabinet-toppowerPoutputbytheDCinputpowerPBSofthebasestation.

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page12(55)

Airinterface:indicatesthelinkfromtheoutputoftheantennaonthetopofthecabinettotheradiotransmissionreceivedbytheuserterminalovertheairinterface.Theenergyperformanceoftheairinterface,RadioEP,canbemeasuredbydividingtheserviceprovidedbythebasestation(e.g.,deliveredbits,coverage,ornumberofsubscribersservedbythebasestation),Spi,bytheoutputpoweratthetopofthecabinet(Poutput).

Figure2:IllustrationofatypicalRANsite,andenergyflowfrommainACinputtoreceptionattheuserterminal.

Theoverallenergyefficiencyisaffectedbythesethreefactors:powerefficiencyofthesiteinfrastructure,powerefficiencyofthebasestationequipment,andenergyperformanceoftheairinterface.Bymultiplyingthesethreefactors:theSitePowerEfficiency(SitePE),theBaseStation(BSPE),andtheRadioEnergyPerformance(RadioEP),weobtaintheoverallenergyperformance(EP)as:

Whenintegratedoveratimeperiod,wegettheEnergyPerformanceasdefinedinchapter

3,

measuredin,e.g.,bits/JouleormorecommonusedMbits/Wh.

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page13(55)

5HOWTODECREASEENERGYCONSUMPTION

Thebasestationsinamobilenetworkrepresentthelargestpartoftheenergyconsumption,about57%oftotalpowerusageofatypicalcellularnetworkisreportedbyAnalysisMason

By2025,thatfigurecanbelowerwhen5Gbecomesmorewidelydeployed,butstillthebasestationswillstillbethebiggestconsumerofenergy.Foraconvergedoperator,theRANcouldaccountforaround50%ofitstotalnetworkenergyconsumptionacrossfixedandmobilenetworksin2025,accordingtoastudybythreeEuropeanuniversities

[4],

see

Figure3.

Figure3:Energyconsumptionbreakdownbynetworkelement2025,UniversityofSplit.

5Gcanbeusedtoimproveenergyefficiency.Moreefficientpoweramplifiershavebeendeveloped,renewableenergysourcesforpoweringon-gridandoff-gridsites,includingsolarpower,arestartingtobewidelyadopted.Moreover,newgenerationofbatteriesarebecominganintegralpartofany5Gsitetoenhanceenergymanagement,andliquidcoolingisbeingimplementedtoreducetheneedforairconditioning,seechapter

6.

3GPPNRspecificationhasenabledanumberofnewtechnologiesthatcanhelptoimproveenergyperformanceonnetworklevel.Theunique3rdGenerationPartnershipProject(3GPP)NewRadio(NR)powersavingtechnologiesare:

Massivemultiple-inputmultiple-output(massiveMIMO)

Leancarrierdesign

ImprovedSleepModes

Artificialintelligence(AI)

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page14(55)

5.1BaseStationHardware

Figure4:Powerconsumptionofbasestation.

Thelargestpowerconsumerofasiteisthemainequipmentconsistingoftheradiounit,basebandandmaincontrol,whichaccountsforapproximately50%.Thesecondistheairconditioning,accountingfor40%.Whenlookingatthebasestation,theradioprocessingaccountsfor40%.Thisunitconvertsthedigitalsignalfromthebasebandintoamplifiedradiowaves.Sincethepoweramplifieroftheradiounitconsumesmostofthepower,itdefinestheefficiencyofaradiounit.

TheseenergyconsumptionpercentagesmayvarydependingontheTelecomequipmentpowerefficiency,thetechnologyandcapacityofairconditioningunits,theclimateandthelocationofthebasestationetc.Operatorsshouldevaluatetheirenergyconsumptionpercentagesbymeasuringenergyconsumptionfortheirnetworkbeforedecidingwheretofocusonforenergysavings.

Thepowerconsumptionof5GbasestationusingmassiveMIMOcanbedividedintotwomajorparts:theantennaunitandthebasebandunit(BBU).Thepowerconsumptionofantennaunitaccountsforabout90%ofthetotalconsumptionofthebasestation,anditisthemaincomponentofthepowerconsumptionofthebasestation.Theantennaunitpowerconsumptioncanbedividedintopoweramplifier,smallsignal,digitalintermediatefrequencyandpowersupply.

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page15(55)

Figure5:Powerconsumptionofantennaunit.

When2Gwasintroduced,thepowerefficiencyofthepoweramplifierwasbelow20%.Overtimeefficiencyofpoweramplifiershasbeengraduallyimprovedduetotheimprovementofpoweramplifierarchitecturedesignandsemiconductormaterialtechnology.MoreadvancedDohertyarchitecturescombinedwithenvelopetrackingandGalliumNitride(GaN)materialshavebeenappliedinthepoweramplifiers,increasingtheefficiencyofpoweramplifiersmorethan50%.GalliumNitridepoweramplifiersarewidelyusedin5Gequipment,sothepowerefficiencyismuchhigherthan2G/3G/4Gequipmentrunninginthecurrentnetwork.

Thepowerconsumptionofthebasestationchangeswiththetrafficload,andthepowerconsumptionratioofeachfunctionalmodulealsochangesaccordingly.Underthefullloadcondition,thepowerconsumptionofthepoweramplifieraccountsforthehighestproportion,about59%;underno-loadconditions,thedigitalintermediatefrequencyparthasthehighestproportionofpowerconsumption,about46%.Therefore,inthefieldofequipment-levelenergy-savingtechnology,itisnotonlynecessarytoimprovetheefficiencyofthepoweramplifier,butalsotoreducethebasicpowerconsumptionofsmallsignalanddigitalintermediatefrequencymodulesundertheconditionoflowinitialloadof5G.

Foratraditionalradiounit,thepoweramplifieraccountsforthelargestpartofthepowerconsumption.However,withthedeploymentofmassiveMIMO(e.g.64T64R),powerconsumptionforthedigitalcomponentswillincreaseduetoincreasednumberoftransmitters,sincemorebasebandprocessing,e-CPRIprocessingandsupportofalgorithmslikeDigitalPre-Distortion(DPD)andCrestFactorReduction(CFR)isrequired.Therefore,itisimportanttousepowerefficienthardwaresuchasApplicationSpecificStandardProducts(ASSPs)andApplication-SpecificIntegratedCircuits(ASICs)andtomakesurethatthesilicon

GreenFutureNetworks–NetworkEnergyEfficiency

Version1.0,03-October-2021 Page16(55)

designornextgenerationprogrammableradioscanpoweroffmodulesatlowormediumload.

5.1.1VirtualizationofRAN

DecouplingofsoftwarefromthehardwareintheICTindustryandmorespecificallythemobilecorenetworkhasbeengoingonforseveralyears.Datacentresarebe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論