版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
NETWORKENERGYEFFICIENCY
byNGMNAlliance
Version:
1.0
Date:
03.10.2021
DocumentType:
FinalDeliverable(approved)
ConfidentialityClass:
P-Public
Project:
GreenFutureNetworks
Editor/Submitter:
JohanvonPerner(Huawei),VasilisFriderikos(KCL)
Contributors:
JavanErfanian,BellCanada
JianhuaLiu,ChinaMobile
SaimaAnsari,DeutscheTelekom
DanielDianat,Ericsson
DavidLópez-Pérez,Huawei
JohanvonPerner,Huawei
VasislisFriderikos,MischaDohler,King'sCollegeLondon(KCL)
LjupcoJorguseski,TNONL
EmreBilgehanGedik,KorhanYaman,G?khanKALEM,
Turkcell
AnaGalindoSerrano,MariaOikonomakou,Orange
GaryLi,WilliamRedmond,Intel
Marie-PauleOdini,HPE
Approvedby/Date:
NGMNBoard,4thNovember2021
NGMNe.V.
Gro?erHasenpfad30?60598Frankfurt?Germany
Phone+4969/9074998-0?Fax+4969/9074998-41
TheinformationcontainedinthisdocumentrepresentsthecurrentviewheldbyNGMNe.V.ontheissuesdiscussedasofthedateofpublication.Thisdocumentisprovided“asis”withnowarrantieswhatsoeverincludinganywarrantyofmerchantability,non-infringement,orfitnessforanyparticularpurpose.Allliability(includingliabilityforinfringementofanypropertyrights)relatingtotheuseofinformationinthisdocumentisdisclaimed.Nolicense,expressorimplied,toanyintellectualpropertyrightsaregrantedherein.Thisdocumentisdistributedforinformationalpurposesonlyandissubjecttochangewithoutnotice.Readersshouldnotdesignproductsbasedonthisdocument.
?2021NextGenerationMobileNetworkse.V.Allrightsreserved.NopartofthisdocumentmaybereproducedortransmittedinanyformorbyanymeanswithoutpriorwrittenpermissionfromNGMNe.V.
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page2(55)
CONTENTS
1
ExecutiveSummary
5
2IntroductionandPurposeofDocument
8
2.1
Introduction
8
3
Definitions
10
4
EnergyEfficiency
11
4.1
RANSiteOverviewfromanEnergyPerspective
12
5HowtoDecreaseEnergyConsumption
14
5.1
BaseStationHardware
15
5.1.1
VirtualizationofRAN
17
5.2
ProcessorandNetworkServerPowerEfficiencyImprovement
18
5.2.1
CPUPowerManagement
19
5.2.2
VirtualizationTechnology
21
5.2.3
AcceleratorUse
21
5.2.4
InstructionSetArchitectureImprovements
21
5.2.5
WorkloadProfilingandOptimization
22
5.3
Software&Functions
22
5.3.1
SleepModeFunctions
22
5.3.2
SymbolShutdown
28
5.3.3
ChannelShutdown
29
5.3.4
SparseAntennaArrays
29
5.3.5
CarrierShutdown
30
5.3.6
NetworkEnergySavingUsingArtificialIntelligence
30
5.3.7
NetworkDesign
31
5.4
ArtificialIntelligence
32
5.4.1
AIinMobileTelecommunications
33
5.4.2
EnergySavingsThroughArtificialIntelligence
35
5.4.3
EnergyConsumptionofAI
36
5.5
Terminal’sImpactonNetworkEfficiency
41
5.6
Sunsetof2G/3G
42
6EnergyEfficiencyinTechnicalSite
44
6.1
TechnicalSiteCooling
44
6.1.1
FreeCooling
45
6.1.2
LiquidCooling
45
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021
Page3(55)
6.1.3
AIforTechnicalSiteManagement
46
6.1.4
HeatReuse
47
6.2
NextGenerationUninterruptiblePowerSupply
47
7
ConclusionsandRecommendations
49
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page4(55)
1EXECUTIVESUMMARY
EnergyconsumptionofmobilenetworksisakeyconcernfortheoperatorsasitnotonlyleadstoanincreaseintheOPEXbuthasanimpactonCO?emissionsaswell.Therefore,MobileNetworkOperators(MNOs)arefocusingonfindingthebestpossiblewaystoreducetheenergyconsumptionoftheirnetworkseitherbyusinglatesttechnologyorbyoptimizingtheuseoftheactiveandpassivecomponents.Introductionof5Gbringsmoreenergyconsumptionduetothedeploymentofadditionalradiosinnewfrequencylayersbutontheotherhandthe5Gtechnologyismoreenergyefficientthanitspredecessors,thankstotheimprovedspectrumefficiencywhichcomesalongwithhigherMultipleInputMultipleOutput(MIMO)schemesanditsultra-leandesign.Tosupporttherisinguseofcellularconnectivityinthe5Gera,whilereducingenergyconsumptionandemissionsonaper-bitbasisinthecontextofanabsolutereductioninemissions,themobilenetworksneedtobemoreefficient.OnewaytoreducetheseemissionscouldbetheuseofrenewableenergysourceswhichiscoveredintheNGMN“SustainabilityChallengesandInitiativesinMobileNetworks”WhitePaper
[1].
Tomaximizetheend-to-endenergyperformance,itwillbecrucialforMNOstoadoptadifferentapproachtowardsnetworkplanning,deployment,andmanagement.
Leveragingthespectralefficiencyofthe5Gairinterfaceanditsmoreadvancedsleepmodesisimportant,butfurtherefficienciescanbecombinedacrossthreelevels–thebasestationequipmentlevel,sitelevelandnetworklevel.Thereisawiderangeoftechniquesthatcanbeusedacrossthesethreelevelsofnextgenerationnetworkoperation,whichareexploredinthisdocument.Sincethebasestationscoverthelargestpartoftheenergyconsumptioninamobilenetwork,thisWhitePaperdetailsvarioustechniquesforautomaticwake-up/sleepmodesincludingshutdownonsymbol,channelorcarrierbasisandusageofefficientpoweramplifierscombinedwithmassiveMIMO.Sincethetrafficloadvariesduringtheday,itisimportanttodeploysleepmodefunctionsthatshutoffhardwarewhentheloadislow.Symbolshutdownisthemostimportantfunctiontoaddressthisasitsavesapproximate10%energyinalessloadedscenario.Completecarriershutdowncanalsobeusedbuthaslessgainandmighthaveimpactonuserexperience.ThisWhitePaperexploresdifferentsleepmodefunctionsindetail.
Virtualizationhasbeengainingalotofattentioninthemobileindustry,whichmeansthedecouplingofsoftwarefromhardwaretherebyenablingmobileoperatorstodevelopanddeployservicesquickly.Thisalsohelpsintheagiledeploymentofthenetworksandreduces
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page5(55)
thedependencyonproprietaryhardware.VirtualRadioAccessNetwork(RAN)isbasedonCommercialOff-The-Shelf(COTS)hardware,suchasGeneral-PurposeProcessors(GPP)andstandardEthernetNetworkInterfaceCards(NICs).Withtheadvancementsdeliveredinmodernserverplatforms,workloadswithinthewirelessandwirelinenetworkscanbeservedwith(COTS)serverscombinedwithhardwareacceleratorsforoff-loadingheavybasebandprocessing,whileatthesametime,powersavingmodescanbeachievedwithoutcompromisingthestricttelecomgradedeterminismrequirements.
Forthesitelevel,techniquesrangingfromusingrenewableenergyforon-gridandoff-gridsites,smartbatteries,powerefficientpowersuppliesareexplained.FreeandliquidcoolingareseenasanimportantsolutionintechnicalsitesasITequipmentinindoorsitesrequirecoolingsolutionswhichcurrentlycanrepresentupto50%ofthenetworkenergyconsumption.Atnetworklevel,flexiblecooperationbetween5GandLTEisnecessarytodelivertherightamountofcapacityatthelowestpracticalpowerlevelinordertoplanthenetworkoperationbasedonenergyperformance.
MassiveMIMOisakeytechnologyforimprovingenergyperformanceasitallowsantennaarraystofocusnarrowbeamstowardstheuserstherebyincreasingthespectralefficiency.5GtogetherwithmassiveMIMOisthreetofivetimesmorespectrumefficientthan4Gdeployedwithtraditionalradiosolution.Furthermore,itisimportanttoselectthebestantennaconfigurationdependingonthescenarioinordertoachievebestenergyperformance.Betterscalingofenergyconsumptioncanbeachievedbyswitchingoffpartsofthetransmittersatlowertrafficload.
Thedevicesidewillbeimportanttoosincetheperformanceofthedevicewillimpacttheoverallnetworkperformance.Thedevicesignalstrengthreceiversensitivityhasanimpactontheenergyperformance.Withbettersensitivity,higherthroughputandlessre-transmissionareneededwhichmeansthatthebasestationcanuselesspower.
Manyenergysavingsolutionsmentionedinthisdocumenthavealreadybeenimplementedinmobilenetworks.However,theseadvancementsinenergyefficiencywillnotbesufficientasforecastspointtoasignificantriseinenergyconsumptionoverthenextcoupleofyearsduetoconsiderableincreaseintrafficacrossavastrangeofusecases,newtechnologiesandspectrum,greatdealofconnections,andnetworkdensification.Here,ArtificialIntelligence(AI)couldplayanimportantrole.Bypredictingandlearningthetrafficbehaviour,AIalgorithms
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page6(55)
definetheactivation/deactivationofsleepmodefunctionalityandsiteenergymanagementwithoutimpactingtheoverallperformanceincludingQualityofExperience(QoE).AIisstillinanearlyphaseandmoredevelopmentandresearchisneededtoreachitsfullpotential.AIbasedenergysavingsolutionscangreatlyincreasetheenergyperformanceofcellularnetworks.
ThisWhitePaperalsopresentsamethodologyoncalculatingtheenergyconsumptionofAI.ItisbasedonanapproximationwhichcanberefineddependingonthespecificAIarchitectureandusecase.Also,theanalysisisonlyconductedforacanonicalconfigurationofaCNN,i.e.,oneconvolutional,onepoolingandonefullyconnectedlayer.Thechainingofseveralconvolutionallayersscalestheenergyconsumptionlinearly.SimilarenergycalculationmethodologiesareapplicabletoRecurrentNeuralNetworks(RNNs),GenerativeAdversarialNetworks(GANs)andDeepReinforcementLearningbutomittedhereforthesakeofbrevity.AdetailedanalysiscontainingthebenefitsofusingAI,itsimpactonthenetwork,applicableareas,standardization,maturity,andchallengesarealsolisted.
Withoutthesebestpracticesmentionedabove,a5Gnetworkdespiteimprovedbit/joulepowerconsumption–couldtypicallyusemorepowerthana4Gonewithsimilarcoveragearea,becauseofthegreaterdensityofbasestationswhenhigherfrequencyisused.Byadoptingthefullrangeofpowerandsiteoptimisationtechniquesincurrentandfuturenetworks,mobileoperatorscanreduceoratleastkeeptheenergyconsumptionstableeveninadensernetwork.
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page7(55)
2INTRODUCTIONANDPURPOSEOFDOCUMENT
2.1Introduction
InNGMN5GWhitePaper1
[2],
publishedatthebeginningof2015,wesetagoalofanimprovementinenergyefficiencybyafactorof2000within10years,suchthata1000timesprojectedincreaseintrafficcanbecarried,usinghalftheamountofenergyconsumptionrequiredatthetime.Otherssetatargetofatleast100timesimprovementofcapacity,comparedto4G.The5Gsystemissignificantlymoreenergyefficientthanthepreviousgenerations,thoughstillinanearlyphaseonitspathtoachievetherequiredtargets.Furthermore,theend-to-endincreaseinenergyefficiencyshouldfocusonsustainabilityandenvironmentaltargets,towardscarbonneutrality.
Manytrendsarecontributingtotherisinguseofdatatransmittedoverfixedandmobilenetworks.Changesinthewaypeoplework,playandcommunicatehavebeenenabledbymoderntechnology,andcontinuetodriveitsusage.Cellulardatatrafficisprojectedtogrowby6timesbetween2018and2024inemergingeconomies,andby3timesindevelopedmarketsoverthesameperiod
[3].
By2025thereareforecasttobe100billionconnections,including40billionsmartdevices.
Figure1:TrafficGrowth,AnalysisMason2020
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page8(55)
Inordertomeettheseaggressivetargets,astepchangeinenergyefficiencyisneeded.5Gwillplayacriticalroleinaddressingthischallenge.Themostchallengingelementsofamobilenetwork,inenergyconsumptionterms,aretheradiobasestationswhichrepresentabout57percentoftheconsumedenergy
[3].
LongTermEvolution(LTE)networksthatarehighlyloadedhavea20to30percentaverageuseoftheairinterface.Furthermore,approximately20percentofthebasestationscarry80percentofthetraffic,thereforethereareseveralopportunitiestoimprovetheenergyefficiencyofthebasestations.Thiscanbedonebyreducingthepowerconsumptionwhennodataisneededtobetransmittedandincreasehardwareefficiency,especiallywhentransmissionpowerisbelowmaximum.
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page9(55)
3DEFINITIONS
ThroughoutthisWhitePaper,thefollowingpowerandenergyrelateddefinitionsareused:
Powerconsumption:AmountofenergythatistransferredorconvertedperunittimeiscalledpowerconsumptionanditisexpressedinSIunitasWatt[W].Poweriscalculatedbymultiplyingvoltage[V]andcurrent[I].OtherunitsthanWattareJoules/sorVolt-Ampere[V.A](1V.A=1W).
EnergyConsumption:AmountofpowerusedoveratimeperiodiscalledenergyconsumptionanditisexpressedinSIunitasWattSecond[Ws]orJoules[J].Normallyinelectricitybillskilowatthour[kWh]isused(1Ws=1J,1Wh=3600Ws=3600J).
PowerEfficiency:Theproducedpowerofaunitvstheconsumedpowerforproducingtheoutputpowerperunittimeiscalledpowerefficiencyandnormallyitispresentedaspercentage[%].PowerEfficiency=(OutputPower/InputPower)x100[%].
EnergyPerformance:Theratiobetweentheproducedtaskorworkandtheconsumedpowerforproducingthistaskorworkoveratimeperiodiscalledenergyperformance.ThetaskorworkcouldbeanythingandintelecommunicationitcanforexamplebethedeliveredbitstoaUserEquipment(UE).Inthiscasetheunitcouldbeforexample[Mbits/kWh]or[bits
Wh]or[Mbits/Joules].SincetheelectricitybillsforoperatorsarenormallypresentedinKWhandtheworkcanbeexpressedasdeliveringMbitstoauseritwouldbemoreconvenienttoexpresstheunitas[Mbits/KWh].
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page10(55)
4ENERGYEFFICIENCY
Theenergyefficiencyin5Gsystemscanbeattributedtomultipleadvancements.Theenhancementsindatatransmission,efficiencyincontrolmessagingandsignalling,andabilitytousesleepmodebasedontrafficandloadconditions,areamongthecapabilitiesbydesign.Furthermore,thegranulararchitecture,andincreasingdisaggregationandcloudnativearchitectureandoperation,withvirtualizationandsoftwarization,increaseagilityandreducefootprint.Thispathtowardsintelligentanddynamicorchestration,programmability,lifecyclemanagement,andfullautomation,hasgreatpotentialtobeleveragedtowardsourgoals.Inaddition,products,anddeploymentandoperationalstrategies,havealreadyfocussedoninnovativewaystoadvanceenergyefficiency.
Despitetheseadvancementsinenergyefficiency,theforecastspointtoasignificantincreaseinenergyconsumption,andtherebyinCO?emissions,intheabsenceofactiveintervention,overthenextseveralyears.Thisisduetoaconsiderableincreaseintrafficacrossavastrangeofusecases,newtechnologiesandspectrum,greatdealofconnections,anddensification.Someofthesefactorsneedtobeevaluatedandoptimized,andultimatelyleadtotheneedforintelligentMachineLearning(ML)-basedoperation.Forexample,smallcells,bynature,introduceefficiencythroughcarryingtrafficatlowerenergyconsumption.However,thiscanhaveareverseeffectwithincreasingdensificationandinterference,withoutintelligentdynamicplanningandallocation.Similarly,massiveMultipleInputMultipleOutput(MIMO)hasthepotentialtoincreaseefficiency,intermsoftrafficperunitofenergyconsumption,ifbalancedagainstthecomplexityandconsumptionitintroduces.Trade-offsmayneedtobeconsideredtooptimizeandmaintaindesigngoals.
Advancementinequipmentpowerefficiencyandnetworkenergyperformancemustbeconsideredfromanend-to-endperspective.Thesecanbroadlyinclude:
Specificationsanddesign,suchasthoserelatedtodatatransmission,signalling,sleepmodes,distributedarchitecture,cloud,andre-configurableRadioAccessNetwork(RAN)andEdge.
AI-drivencognitiveandautonomousarchitectureandoperation,thatsupportenergyefficientdynamicplanning,deployment,resourceallocation,monitoringandoptimization,shutdowns,etc.
Powerefficiencyinequipment,devices,boards,andsiteordatacentrecooling,etc.
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page11(55)
Energyharvestingandtransfer,andefficiencyachievedfromcirculareconomy.
Indirectresourcessuchasexternallogistics,andendofequipmentlife.
Ecosystem,regulatory,andsupply-chaincollaborativefocus,awareness,andorganizationalalignment.
MobileNetworkOperators(MNOs),theirpartners,andtheentireecosystemwillnotachievethesustainabilitytargets,withoutanend-to-endcollaborative,committedandorchestratedeffort.Atitshighestlevel,thegoalinvolvestheinter-connectedpillarsofachievingdigitaltransformationwithfull5Gandsubsequently6Grealization,sustainability,andsocialresponsibility.Withthewideandgrowingrangeofusecases,particularlyforautomatedindustries,agreatimpactonothersectorsiswellexpectedandarticulated.
4.1RANSiteOverviewfromanEnergyPerspective
Aradioaccessnetwork(RAN)consistsofalargenumberofsites,whichtypicallyaccommodatetwotypesofequipment:siteinfrastructureequipment(site)andmainequipment(basestation).SiteinfrastructuretypicallyconsistsofrectifiersforconvertingACpowertoDCpower,powerbackupequipment(e.g.,batteries)andotherequipmentsuchasairconditionersforcooling.Themainequipmentisthebasestationequipmentinthecabinet,typicallybasebandunitandradiounits.Fromthebasestation,dataistransmittedovertheairinterface(viaradio)totheuserterminal.
Figure2
providesanillustrationofthisandthetypicalequipmentinvolved,anditalsoillustratestheenergyflowfromthemainACinputfromthegrid,viaDCpowerconversion,deliverytothemainequipment(basestation),conversiontocabinet-toppowerbythebasestation,andfinallytransmissionovertheairinterfacetotheuserterminal.Asshowninthefigure,theenergyflowcanbedividedintothreestages:
Siteinfrastructure:fromtheACmainsupplytotheDCpowersupplyforthebasestation.Theenergyefficiencyofthesiteinfrastructure,SiteEE,canbemeasuredbydividingtheDCinputpowerofthebasestation(PBS)bytheACinputpowerofthesite(PAC).Thismeasureistheinverseofthewell-knownPUE(PowerUsageEffectiveness),whichiscommonlyusedfordatacentres.
Basestation:fromtheDCpowerinput(PBS)tothecabinet-toppoweroutputofthebasestationantenna(Poutput).Thepowerefficiencyofabasestationcanbemeasuredbydividingthecabinet-toppowerPoutputbytheDCinputpowerPBSofthebasestation.
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page12(55)
Airinterface:indicatesthelinkfromtheoutputoftheantennaonthetopofthecabinettotheradiotransmissionreceivedbytheuserterminalovertheairinterface.Theenergyperformanceoftheairinterface,RadioEP,canbemeasuredbydividingtheserviceprovidedbythebasestation(e.g.,deliveredbits,coverage,ornumberofsubscribersservedbythebasestation),Spi,bytheoutputpoweratthetopofthecabinet(Poutput).
Figure2:IllustrationofatypicalRANsite,andenergyflowfrommainACinputtoreceptionattheuserterminal.
Theoverallenergyefficiencyisaffectedbythesethreefactors:powerefficiencyofthesiteinfrastructure,powerefficiencyofthebasestationequipment,andenergyperformanceoftheairinterface.Bymultiplyingthesethreefactors:theSitePowerEfficiency(SitePE),theBaseStation(BSPE),andtheRadioEnergyPerformance(RadioEP),weobtaintheoverallenergyperformance(EP)as:
Whenintegratedoveratimeperiod,wegettheEnergyPerformanceasdefinedinchapter
3,
measuredin,e.g.,bits/JouleormorecommonusedMbits/Wh.
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page13(55)
5HOWTODECREASEENERGYCONSUMPTION
Thebasestationsinamobilenetworkrepresentthelargestpartoftheenergyconsumption,about57%oftotalpowerusageofatypicalcellularnetworkisreportedbyAnalysisMason
By2025,thatfigurecanbelowerwhen5Gbecomesmorewidelydeployed,butstillthebasestationswillstillbethebiggestconsumerofenergy.Foraconvergedoperator,theRANcouldaccountforaround50%ofitstotalnetworkenergyconsumptionacrossfixedandmobilenetworksin2025,accordingtoastudybythreeEuropeanuniversities
[4],
see
Figure3.
Figure3:Energyconsumptionbreakdownbynetworkelement2025,UniversityofSplit.
5Gcanbeusedtoimproveenergyefficiency.Moreefficientpoweramplifiershavebeendeveloped,renewableenergysourcesforpoweringon-gridandoff-gridsites,includingsolarpower,arestartingtobewidelyadopted.Moreover,newgenerationofbatteriesarebecominganintegralpartofany5Gsitetoenhanceenergymanagement,andliquidcoolingisbeingimplementedtoreducetheneedforairconditioning,seechapter
6.
3GPPNRspecificationhasenabledanumberofnewtechnologiesthatcanhelptoimproveenergyperformanceonnetworklevel.Theunique3rdGenerationPartnershipProject(3GPP)NewRadio(NR)powersavingtechnologiesare:
Massivemultiple-inputmultiple-output(massiveMIMO)
Leancarrierdesign
ImprovedSleepModes
Artificialintelligence(AI)
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page14(55)
5.1BaseStationHardware
Figure4:Powerconsumptionofbasestation.
Thelargestpowerconsumerofasiteisthemainequipmentconsistingoftheradiounit,basebandandmaincontrol,whichaccountsforapproximately50%.Thesecondistheairconditioning,accountingfor40%.Whenlookingatthebasestation,theradioprocessingaccountsfor40%.Thisunitconvertsthedigitalsignalfromthebasebandintoamplifiedradiowaves.Sincethepoweramplifieroftheradiounitconsumesmostofthepower,itdefinestheefficiencyofaradiounit.
TheseenergyconsumptionpercentagesmayvarydependingontheTelecomequipmentpowerefficiency,thetechnologyandcapacityofairconditioningunits,theclimateandthelocationofthebasestationetc.Operatorsshouldevaluatetheirenergyconsumptionpercentagesbymeasuringenergyconsumptionfortheirnetworkbeforedecidingwheretofocusonforenergysavings.
Thepowerconsumptionof5GbasestationusingmassiveMIMOcanbedividedintotwomajorparts:theantennaunitandthebasebandunit(BBU).Thepowerconsumptionofantennaunitaccountsforabout90%ofthetotalconsumptionofthebasestation,anditisthemaincomponentofthepowerconsumptionofthebasestation.Theantennaunitpowerconsumptioncanbedividedintopoweramplifier,smallsignal,digitalintermediatefrequencyandpowersupply.
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page15(55)
Figure5:Powerconsumptionofantennaunit.
When2Gwasintroduced,thepowerefficiencyofthepoweramplifierwasbelow20%.Overtimeefficiencyofpoweramplifiershasbeengraduallyimprovedduetotheimprovementofpoweramplifierarchitecturedesignandsemiconductormaterialtechnology.MoreadvancedDohertyarchitecturescombinedwithenvelopetrackingandGalliumNitride(GaN)materialshavebeenappliedinthepoweramplifiers,increasingtheefficiencyofpoweramplifiersmorethan50%.GalliumNitridepoweramplifiersarewidelyusedin5Gequipment,sothepowerefficiencyismuchhigherthan2G/3G/4Gequipmentrunninginthecurrentnetwork.
Thepowerconsumptionofthebasestationchangeswiththetrafficload,andthepowerconsumptionratioofeachfunctionalmodulealsochangesaccordingly.Underthefullloadcondition,thepowerconsumptionofthepoweramplifieraccountsforthehighestproportion,about59%;underno-loadconditions,thedigitalintermediatefrequencyparthasthehighestproportionofpowerconsumption,about46%.Therefore,inthefieldofequipment-levelenergy-savingtechnology,itisnotonlynecessarytoimprovetheefficiencyofthepoweramplifier,butalsotoreducethebasicpowerconsumptionofsmallsignalanddigitalintermediatefrequencymodulesundertheconditionoflowinitialloadof5G.
Foratraditionalradiounit,thepoweramplifieraccountsforthelargestpartofthepowerconsumption.However,withthedeploymentofmassiveMIMO(e.g.64T64R),powerconsumptionforthedigitalcomponentswillincreaseduetoincreasednumberoftransmitters,sincemorebasebandprocessing,e-CPRIprocessingandsupportofalgorithmslikeDigitalPre-Distortion(DPD)andCrestFactorReduction(CFR)isrequired.Therefore,itisimportanttousepowerefficienthardwaresuchasApplicationSpecificStandardProducts(ASSPs)andApplication-SpecificIntegratedCircuits(ASICs)andtomakesurethatthesilicon
GreenFutureNetworks–NetworkEnergyEfficiency
Version1.0,03-October-2021 Page16(55)
designornextgenerationprogrammableradioscanpoweroffmodulesatlowormediumload.
5.1.1VirtualizationofRAN
DecouplingofsoftwarefromthehardwareintheICTindustryandmorespecificallythemobilecorenetworkhasbeengoingonforseveralyears.Datacentresarebe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購信息管理與統(tǒng)計分析制度
- 濟南高新區(qū)培訓(xùn)
- 濟南醫(yī)保政策培訓(xùn)
- 梧州(粵桂界)至樂業(yè)(黔桂界)公路(宜州至東蘭段)環(huán)境影響報告書
- 樹葉印畫課件
- 津巴布韋通貨膨脹課件
- 2023-2024學(xué)年云南省曲靖市高一下學(xué)期期末地理試題(解析版)
- 2024-2025學(xué)年遼寧省重點高中聯(lián)合體高二下學(xué)期期末檢測歷史試題(解析版)
- 2024-2025學(xué)年江蘇省徐州市六區(qū)縣高二下學(xué)期期中考試歷史試題(解析版)
- 2026年汽車維修工程師試題庫汽車維修與保養(yǎng)技術(shù)
- 信息化培訓(xùn)考核管理制度
- 體育培訓(xùn)教練員制度
- GB/T 46918.1-2025微細氣泡技術(shù)水中微細氣泡分散體系氣體含量的測量方法第1部分:氧氣含量
- 縣醫(yī)院醫(yī)?;鸸芾碇贫?3篇)
- 2025年天津市高考英語真題卷含答案解析
- 建筑鋼結(jié)構(gòu)防火技術(shù)規(guī)范
- 護坡施工方案審查(3篇)
- 汽車車架號培訓(xùn)課件
- 2026年湖南單招工業(yè)機器人專業(yè)中職生技能經(jīng)典題含編程基礎(chǔ)
- 2026年化工廠的工作計劃
- 便道移交協(xié)議書
評論
0/150
提交評論