版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年云南省師范大學(xué)附屬中學(xué)高三數(shù)學(xué)第一學(xué)期期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象大致是()A. B.C. D.2.已知復(fù)數(shù)滿足,則()A. B. C. D.3.設(shè)復(fù)數(shù)滿足為虛數(shù)單位),則()A. B. C. D.4.設(shè)遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.5.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.6.已知正四棱錐的側(cè)棱長與底面邊長都相等,是的中點,則所成的角的余弦值為()A. B. C. D.7.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.8.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.39.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.210.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設(shè)送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.11.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.12.的二項展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-28二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.14.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.15.在二項式的展開式中,的系數(shù)為________.16.在中,,.若,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)誠信是立身之本,道德之基,我校學(xué)生會創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計算表中十二周“水站誠信度”的平均數(shù);(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機抽取兩周進行調(diào)研,計算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學(xué)生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.18.(12分)在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.(1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.19.(12分)已知函數(shù).⑴當(dāng)時,求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.20.(12分)如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學(xué)的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過處,且全程不等紅綠燈的概率;(3)請你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計一條最佳的上學(xué)路線,且應(yīng)盡量避開哪條路線?21.(12分)函數(shù),且恒成立.(1)求實數(shù)的集合;(2)當(dāng)時,判斷圖象與圖象的交點個數(shù),并證明.(參考數(shù)據(jù):)22.(10分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當(dāng)時,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項;結(jié)合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當(dāng)時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.2、A【解析】
由復(fù)數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復(fù)數(shù)的運算.屬于簡單題.3、B【解析】
易得,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復(fù)數(shù)的乘法、除法運算,考查學(xué)生的基本計算能力,是一道容易題.4、A【解析】
根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學(xué)生對這些知識的理解掌握水平.5、C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.6、C【解析】試題分析:設(shè)的交點為,連接,則為所成的角或其補角;設(shè)正四棱錐的棱長為,則,所以,故C為正確答案.考點:異面直線所成的角.7、C【解析】
利用基本初等函數(shù)的單調(diào)性判斷各選項中函數(shù)在區(qū)間上的單調(diào)性,進而可得出結(jié)果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.【點睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.8、A【解析】
將圓的方程化簡成標準方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.9、A【解析】
利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計算,難度容易.10、D【解析】
這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點睛】考查幾何概型,是基礎(chǔ)題.11、A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.12、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數(shù)是,故選A.考點:二項式定理的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
建系,設(shè)設(shè),由可得,進一步得到的坐標,再利用數(shù)量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標法求向量的數(shù)量積,考查學(xué)生的運算求解能力,是一道中檔題.14、【解析】
利用等差數(shù)列的通項公式以及等比中項的性質(zhì),化簡求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列通項公式以及等比中項的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.15、60【解析】
直接利用二項式定理計算得到答案.【詳解】二項式的展開式通項為:,取,則的系數(shù)為.故答案為:.【點睛】本題考查了二項式定理,意在考查學(xué)生的計算能力和應(yīng)用能力.16、【解析】分析:首先設(shè)出相應(yīng)的直角邊長,利用余弦勾股定理得到相應(yīng)的斜邊長,之后應(yīng)用余弦定理得到直角邊長之間的關(guān)系,從而應(yīng)用正切函數(shù)的定義,對邊比臨邊,求得對應(yīng)角的正切值,即可得結(jié)果.詳解:根據(jù)題意,設(shè),則,根據(jù),得,由勾股定理可得,根據(jù)余弦定理可得,化簡整理得,即,解得,所以,故答案是.點睛:該題考查的是有關(guān)解三角形的問題,在解題的過程中,注意分析要求對應(yīng)角的正切值,需要求誰,而題中所給的條件與對應(yīng)的結(jié)果之間有什么樣的連線,設(shè)出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應(yīng)的等量關(guān)系,求得最后的結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ);(Ⅲ)兩次活動效果均好,理由詳見解析.【解析】
(Ⅰ)結(jié)合表中的數(shù)據(jù),代入平均數(shù)公式求解即可;(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周,則有兩周為“高誠信度”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計算公式求解即可;(Ⅲ)結(jié)合表中的數(shù)據(jù)判斷即可.【詳解】(Ⅰ)表中十二周“水站誠信度”的平均數(shù).(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周均為“高誠信度”事件為,總的基本事件為共15種,事件所包含的基本事件為共10種,由古典概型概率計算公式可得,.(Ⅲ)兩次活動效果均好.理由:活動舉辦后,“水站誠信度'由和看出,后繼一周都有提升.【點睛】本題考查平均數(shù)公式和古典概型概率計算公式;考查運算求解能力;利用列舉法正確列舉出所有的基本事件是求古典概型概率的關(guān)鍵;屬于中檔題、??碱}型.18、(1)證明見解析;(2).【解析】
(1)由已知可得,結(jié)合,由直線與平面垂直的判定可得平面;(2)由(1)知,,則,,兩兩互相垂直,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,設(shè),0,,由二面角的余弦值為求解,再由空間向量求解直線與平面所成角的正弦值.【詳解】(1)證明:因為四邊形是等腰梯形,,,所以.又,所以,因此,,又,且,,平面,所以平面.(2)取的中點,連接,,由于,因此,又平面,平面,所以.由于,,平面,所以平面,故,所以為二面角的平面角.在等腰三角形中,由于,因此,又,因為,所以,所以以為軸、為軸、為軸建立空間直角坐標系,則,,,,設(shè)平面的法向量為所以,即,令,則,,則平面的法向量,,設(shè)直線與平面所成角為,則【點睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.19、(1)當(dāng)時,函數(shù)取得極小值為,無極大值;(2)【解析】試題分析:(1),通過求導(dǎo)分析,得函數(shù)取得極小值為,無極大值;(2),所以,通過求導(dǎo)討論,得到的取值范圍是.試題解析:(1)函數(shù)的定義域為當(dāng)時,,所以所以當(dāng)時,,當(dāng)時,,所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以當(dāng)時,函數(shù)取得極小值為,無極大值;(2)設(shè)函數(shù)上點與函數(shù)上點處切線相同,則所以所以,代入得:設(shè),則不妨設(shè)則當(dāng)時,,當(dāng)時,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,代入可得:設(shè),則對恒成立,所以在區(qū)間上單調(diào)遞增,又所以當(dāng)時,即當(dāng)時,又當(dāng)時因此當(dāng)時,函數(shù)必有零點;即當(dāng)時,必存在使得成立;即存在使得函數(shù)上點與函數(shù)上點處切線相同.又由得:所以單調(diào)遞減,因此所以實數(shù)的取值范圍是.20、(1)6種;(2);(3).【解析】
(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經(jīng)過處,共有4條路線,即,,,,分別對4條路線進行分析計算概率;(3)分別對小明上學(xué)的6條路線進行分析求均值,均值越大的應(yīng)避免.【詳解】(1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數(shù)為條.(2)小明途中恰好經(jīng)過處,共有4條路線:①當(dāng)走時,全程不等紅綠燈的概率;②當(dāng)走時,全程不等紅綠燈的概率;③當(dāng)走時,全程不等紅綠燈的概率;④當(dāng)走時,全程不等紅綠燈的概率.所以途中恰好經(jīng)過處,且全程不等信號燈的概率.(3)設(shè)以下第條的路線等信號燈的次數(shù)為變量,則①第一條:,則;②第二條:,則;③另外四條路線:;;,則綜上,小明上學(xué)的最佳路線為;應(yīng)盡量避開.【點睛】本題考查概率在實際生活中的綜合應(yīng)用問題,考查學(xué)生邏輯推理與運算能力,是一道有一定難度的題.21、(1);(2)2個,證明見解析【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點個數(shù)轉(zhuǎn)化為方程實數(shù)解的個數(shù)問題,然后構(gòu)造函數(shù),再利用導(dǎo)數(shù)討論此函數(shù)零點的個數(shù).【詳解】(1)的定義域為,因為,1°當(dāng)時,在上單調(diào)遞減,時,使得,與條件矛盾;2°當(dāng)時,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,若;若;而時,,要使恒成立,故.(2)原問題轉(zhuǎn)化
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 妊娠期免疫性疾病的個體化調(diào)節(jié)策略
- 妊娠期急性胰腺炎的病因與治療策略新進展
- 安全生產(chǎn)判斷試題及答案
- 大段骨缺損:機器人3D打印血管化修復(fù)策略
- 大數(shù)據(jù)分析在疼痛預(yù)測中的模型構(gòu)建
- 科目二考試順序及答案
- 2026年體驗農(nóng)業(yè)(開發(fā)模式)試題及答案
- 2025年中職第四學(xué)年(制冷系統(tǒng)維修)故障排除階段測試題及答案
- 2025年高職室內(nèi)設(shè)計(室內(nèi)裝修設(shè)計)試題及答案
- 2025年高職(航空服務(wù))航空服務(wù)基礎(chǔ)試題及答案
- 腎性貧血PDCA課件
- 人工智能通識教程 課件 第12章-提示詞工程
- 人工智能+靈活就業(yè)創(chuàng)新模式研究報告
- 冬季通信工程安全培訓(xùn)課件
- 板換式換熱器施工方案
- 福建省計算機專項考評員試題含答案
- 2025年中遠海運招聘1189人(含社招)筆試參考題庫附帶答案詳解
- (正式版)DB61∕T 1878-2024 《餐飲業(yè)油煙管道系統(tǒng)清洗規(guī)范》
- 水利水電工程單元工程施工質(zhì)量驗收標準 第4部分:堤防與河道整治工程
- 青鳥纜式線型感溫火災(zāi)探測器JTW-LD-JBF4310施工指導(dǎo)及調(diào)試注意事項
- 譯林版新高一英語《語法填空》專項練習(xí)題匯編(含答案解析)
評論
0/150
提交評論