山東省錦澤技工學校2024屆高三第一輪復習質(zhì)量檢測試題數(shù)學試題_第1頁
山東省錦澤技工學校2024屆高三第一輪復習質(zhì)量檢測試題數(shù)學試題_第2頁
山東省錦澤技工學校2024屆高三第一輪復習質(zhì)量檢測試題數(shù)學試題_第3頁
山東省錦澤技工學校2024屆高三第一輪復習質(zhì)量檢測試題數(shù)學試題_第4頁
山東省錦澤技工學校2024屆高三第一輪復習質(zhì)量檢測試題數(shù)學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省錦澤技工學校2024屆高三第一輪復習質(zhì)量檢測試題數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,2.已知函數(shù)(e為自然對數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為()A. B. C. D.3.設(shè)集合,,則集合A. B. C. D.4.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.5.若函數(shù)()的圖象過點,則()A.函數(shù)的值域是 B.點是的一個對稱中心C.函數(shù)的最小正周期是 D.直線是的一條對稱軸6.已知向量,且,則等于()A.4 B.3 C.2 D.17.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.138.設(shè)雙曲線的一條漸近線為,且一個焦點與拋物線的焦點相同,則此雙曲線的方程為()A. B. C. D.9.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.710.設(shè),是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④11.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要12.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為偶函數(shù),則________.14.(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.15.展開式中的系數(shù)為_________.16.已知復數(shù),其中是虛數(shù)單位.若的實部與虛部相等,則實數(shù)的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標;若不存在,請說明理由。18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).點在曲線上,點滿足.(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求動點的軌跡的極坐標方程;(2)點,分別是曲線上第一象限,第二象限上兩點,且滿足,求的值.19.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點的個數(shù);(2)記函數(shù)在區(qū)間上的兩個極值點分別為、,求證:.20.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設(shè)點,直線與曲線交于,兩點,求的值.21.(12分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.22.(10分)在直角坐標系中,曲線的參數(shù)方程為以為極點,軸正半軸為極軸建立極坐標系,設(shè)點在曲線上,點在曲線上,且為正三角形.(1)求點,的極坐標;(2)若點為曲線上的動點,為線段的中點,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】解:x、y滿足約束條件,表示的可行域如圖:目標函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標函數(shù)的最小值為:4目標函數(shù)的范圍是[4,+∞).故選D.2、A【解題分析】

若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【題目詳解】解:,∴,設(shè),∴,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,∴,當時,,當,,函數(shù)恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,∴且,即,且∴,故實數(shù)m的最大值為,故選:A【題目點撥】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學運算能力.3、B【解題分析】

先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【題目詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【題目點撥】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應(yīng)的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.4、D【解題分析】

根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【題目詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【題目點撥】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.5、A【解題分析】

根據(jù)函數(shù)的圖像過點,求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【題目詳解】由函數(shù)()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【題目點撥】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎(chǔ)題.6、D【解題分析】

由已知結(jié)合向量垂直的坐標表示即可求解.【題目詳解】因為,且,,則.故選:.【題目點撥】本題主要考查了向量垂直的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.7、D【解題分析】

利用等差數(shù)列的通項公式可得,再利用等差數(shù)列的前項和公式即可求解.【題目詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時,.故選:D【題目點撥】本題考查了等差數(shù)列的通項公式、等差數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.8、C【解題分析】

求得拋物線的焦點坐標,可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【題目詳解】解:拋物線的焦點為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【題目點撥】本題主要考查了求雙曲線的方程,屬于中檔題.9、C【解題分析】

根據(jù)程序框圖程序運算即可得.【題目詳解】依程序運算可得:,故選:C【題目點撥】本題主要考查了程序框圖的計算,解題的關(guān)鍵是理解程序框圖運行的過程.10、C【解題分析】

根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【題目詳解】解:①:、也可能相交或異面,故①錯②:因為,,所以或,因為,所以,故②對③:或,故③錯④:如圖因為,,在內(nèi)過點作直線的垂線,則直線,又因為,設(shè)經(jīng)過和相交的平面與交于直線,則又,所以因為,,所以,所以,故④對.故選:C【題目點撥】考查線面平行或垂直的判斷,基礎(chǔ)題.11、B【解題分析】

根據(jù)充分必要條件的概念進行判斷.【題目詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【題目點撥】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰是條件,誰是結(jié)論.12、C【解題分析】

由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【題目詳解】解:,,且,,化為:.,解得..故選:.【題目點撥】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

二次函數(shù)為偶函數(shù)說明一次項系數(shù)為0,求得參數(shù),將代入表達式即可求解【題目詳解】由為偶函數(shù),知其一次項的系數(shù)為0,所以,,所以,故答案為:-5【題目點撥】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎(chǔ)題14、【解題分析】

方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.15、【解題分析】

變換,根據(jù)二項式定理計算得到答案.【題目詳解】的展開式的通項為:,,取和,計算得到系數(shù)為:.故答案為:.【題目點撥】本題考查了二項式定理,意在考查學生的計算能力和應(yīng)用能力.16、【解題分析】

直接由復數(shù)代數(shù)形式的乘法運算化簡,結(jié)合已知條件即可求出實數(shù)的值.【題目詳解】解:的實部與虛部相等,所以,計算得出.故答案為:【題目點撥】本題考查復數(shù)的乘法運算和復數(shù)的概念,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在定點,見解析【解題分析】

(1)設(shè)動點,則,利用,求出曲線的方程.(2)由已知直線過點,設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,,利用韋達定理求解直線的斜率,然后求解指向性方程,推出結(jié)果.【題目詳解】解:(1)設(shè)動點,則,,,即,化簡得:。由已知,故曲線的方程為。(2)由已知直線過點,設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,則又直線與斜率分別為,,則。當時,,;當時,,。所以存在定點,使得直線與斜率之積為定值。【題目點撥】本題考查軌跡方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計算能力,屬于中檔題.18、(1)();(2)【解題分析】

(1)由已知,曲線的參數(shù)方程消去t后,要注意x的范圍,再利用普通方程與極坐標方程的互化公式運算即可;(2)設(shè),,由(1)可得,,相加即可得到證明.【題目詳解】(1),∵,∴,∴,由題可知:,:().(2)因為,設(shè),,則,,.【題目點撥】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,考查學生的計算能力,是一道容易題.19、(1);(2)見解析.【解題分析】

(1)利用導數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點和極小值點分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數(shù)的單調(diào)性推導出,再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【題目詳解】(1),,,當時,,,,則函數(shù)在上單調(diào)遞增;當時,,,,則函數(shù)在上單調(diào)遞減;當時,,,,則函數(shù)在上單調(diào)遞增.,,,,.所以,函數(shù)在與不存在零點,在區(qū)間和上各存在一個零點.綜上所述,函數(shù)在區(qū)間上的零點的個數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點,所以,函數(shù)在區(qū)間與上各存在一個極值點、,且,,且滿足即,,,又,即,,,,,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即.【題目點撥】本題考查利用導數(shù)研究函數(shù)的零點個數(shù)問題,同時也考查了利用導數(shù)證明不等式,考查分析問題和解決問題的能力,屬于難題.20、(1);(2)【解題分析】

(1)利用參數(shù)方程、普通方程、極坐標方程間的互化公式即可;(2)將直線參數(shù)方程代入圓的普通方程,可得,,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【題目詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去;得曲線的極坐標方程為.由,,,可得,即曲線的直角坐標方程為;(2)將直線的參數(shù)方程(為參數(shù))代入的方程,可得,,設(shè),是點對應(yīng)的參數(shù)值,,,則.【題目點撥】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.21、(1)1;(2)證明見解析.【解題分析】

(1)將不等式化為,求解得出,根據(jù)解集確定正數(shù)的值;(2)利用基本不等式以及不等式的性質(zhì),得出,,,三式相加,即可得證.【題目詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:由(1)知,原不等式可化為∵,∴,同理,三式相加得,當且僅當時取等號綜上.【題目點撥】本題主要考查了求絕對值不等式中參數(shù)的范圍以及基本不等式的應(yīng)用,屬于中檔題.22、(1),;(2).【解題分析】

(1)利用極坐標和直角坐標的互化公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論