2024屆貴州省黔西縣高三高考仿真模擬沖刺考試(五)數(shù)學試題_第1頁
2024屆貴州省黔西縣高三高考仿真模擬沖刺考試(五)數(shù)學試題_第2頁
2024屆貴州省黔西縣高三高考仿真模擬沖刺考試(五)數(shù)學試題_第3頁
2024屆貴州省黔西縣高三高考仿真模擬沖刺考試(五)數(shù)學試題_第4頁
2024屆貴州省黔西縣高三高考仿真模擬沖刺考試(五)數(shù)學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆貴州省黔西縣高三高考仿真模擬沖刺考試(五)數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上的圖象大致為()A. B. C. D.2.已知,且,則在方向上的投影為()A. B. C. D.3.已知、分別為雙曲線:(,)的左、右焦點,過的直線交于、兩點,為坐標原點,若,,則的離心率為()A.2 B. C. D.4.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.5.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.6.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,27.已知函數(shù)是偶函數(shù),當時,函數(shù)單調遞減,設,,,則的大小關系為()A. B. C. D.8.要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有點的()A.橫坐標縮短到原來的(縱坐標不變),再向左平移個單位長度B.橫坐標縮短到原來的(縱坐標不變),再向右平移個單位長度C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平移個單位長度D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平移個單位長度9.若函數(shù)的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.10.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則()A. B. C. D.11.函數(shù)的對稱軸不可能為()A. B. C. D.12.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.14.己知函數(shù),若曲線在處的切線與直線平行,則__________.15.在平面直角坐標系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.16.若實數(shù),滿足,則的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;(2)求數(shù)列的前項和.18.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.19.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大?。唬á颍┤?,求面積的最大值.20.(12分)如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.21.(12分)已知函數(shù),不等式的解集為.(1)求實數(shù),的值;(2)若,,,求證:.22.(10分)分別為的內角的對邊.已知.(1)若,求;(2)已知,當?shù)拿娣e取得最大值時,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

根據函數(shù)的奇偶性及函數(shù)在時的符號,即可求解.【題目詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【題目點撥】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對稱性,屬于中檔題.2、C【解題分析】

由向量垂直的向量表示求出,再由投影的定義計算.【題目詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【題目點撥】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關系是解題關鍵.3、D【解題分析】

作出圖象,取AB中點E,連接EF2,設F1A=x,根據雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進而得到e的值【題目詳解】解:取AB中點E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【題目點撥】本題考查雙曲線定義的應用,考查離心率的求法,數(shù)形結合思想,屬于中檔題.對于圓錐曲線中求離心率的問題,關鍵是列出含有中兩個量的方程,有時還要結合橢圓、雙曲線的定義對方程進行整理,從而求出離心率.4、D【解題分析】

根據,先確定出的長度,然后利用雙曲線定義將轉化為的關系式,化簡后可得到的值,即可求漸近線方程.【題目詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【題目點撥】本題考查根據雙曲線中的長度關系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.5、A【解題分析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.6、C【解題分析】

先求出集合U,再根據補集的定義求出結果即可.【題目詳解】由題意得U=x|∵A=1,2∴CU故選C.【題目點撥】本題考查集合補集的運算,求解的關鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.7、A【解題分析】

根據圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據自變量的大小關系得到函數(shù)值的大小關系.【題目詳解】為偶函數(shù)圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:【題目點撥】本題考查利用函數(shù)奇偶性、對稱性和單調性比較函數(shù)值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調性,通過自變量的大小關系求得結果.8、C【解題分析】

根據三角函數(shù)圖像的變換與參數(shù)之間的關系,即可容易求得.【題目詳解】為得到,將橫坐標伸長到原來的2倍(縱坐標不變),故可得;再將向左平移個單位長度,故可得.故選:C.【題目點撥】本題考查三角函數(shù)圖像的平移,涉及誘導公式的使用,屬基礎題.9、B【解題分析】因為對A不符合定義域當中的每一個元素都有象,即可排除;對B滿足函數(shù)定義,故符合;對C出現(xiàn)了定義域當中的一個元素對應值域當中的兩個元素的情況,不符合函數(shù)的定義,從而可以否定;對D因為值域當中有的元素沒有原象,故可否定.故選B.10、B【解題分析】

利用等差數(shù)列性質,若,則求出,再利用等差數(shù)列前項和公式得【題目詳解】解:因為,由等差數(shù)列性質,若,則得,.為數(shù)列的前項和,則.故選:.【題目點撥】本題考查等差數(shù)列性質與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項和公式的靈活應用,如.11、D【解題分析】

由條件利用余弦函數(shù)的圖象的對稱性,得出結論.【題目詳解】對于函數(shù),令,解得,當時,函數(shù)的對稱軸為,,.故選:D.【題目點撥】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎題.12、A【解題分析】

依題意,如圖以為坐標原點建立平面直角坐標系,表示出點的坐標,根據求出的坐標,求出邊所在直線的方程,設,利用坐標表示,根據二次函數(shù)的性質求出最大值.【題目詳解】解:依題意,如圖以為坐標原點建立平面直角坐標系,由,,,,,,,因為點在線段的延長線上,設,解得,所在直線的方程為因為點在邊所在直線上,故設當時故選:【題目點撥】本題考查向量的數(shù)量積,關鍵是建立平面直角坐標系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、;【解題分析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.14、【解題分析】

先求導,再根據導數(shù)的幾何意義,有求解.【題目詳解】因為函數(shù),所以,所以,解得.故答案為:【題目點撥】本題考查導數(shù)的幾何意義,還考查運算求解能力以及數(shù)形結合思想,屬于基礎題.15、【解題分析】

利用,解出,即可求出雙曲線的漸近線方程.【題目詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【題目點撥】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關系,考查了運算能力,屬于基礎題.16、【解題分析】

由約束條件先畫出可行域,然后求目標函數(shù)的最小值.【題目詳解】由約束條件先畫出可行域,如圖所示,由,即,當平行線經過點時取到最小值,由可得,此時,所以的最小值為.故答案為.【題目點撥】本題考查了線性規(guī)劃的知識,解題的一般步驟為先畫出可行域,然后改寫目標函數(shù),結合圖形求出最值,需要掌握解題方法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解題分析】

(1)將等式變形為,進而可證明出是等差數(shù)列,確定數(shù)列的首項和公差,可求得的表達式,進而可得出數(shù)列的通項公式;(2)利用錯位相減法可求得數(shù)列的前項和.【題目詳解】(1)因為,所以,即,所以數(shù)列是等差數(shù)列,且公差,其首項所以,解得;(2),①,②①②,得,所以.【題目點撥】本題考查利用遞推公式證明等差數(shù)列,同時也考查了錯位相減法求和,考查推理能力與計算能力,屬于中等題.18、(1)證明見解析(2)證明見解析【解題分析】

(1)先根據絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【題目詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【題目點撥】本題考查絕對值不等式、應用基本不等式證明不等式,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和推理論證能力.19、(1)(2)【解題分析】

分析:(1)利用正弦定理以及誘導公式與和角公式,結合特殊角的三角函數(shù)值,求得角C;(2)運用向量的平方就是向量模的平方,以及向量數(shù)量積的定義,結合基本不等式,求得的最大值,再由三角形的面積公式計算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點,則,在中,,(注:也可將兩邊平方)即,,所以,當且僅當時取等號.此時,其最大值為.點睛:該題考查的是有關三角形的問題,涉及到的知識點有正弦定理,誘導公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過程中,需要正確使用相關的公式進行運算即可求得結果.20、(1)見解析;(II).【解題分析】

試題分析:(1)取中點,連結,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能證明為直角三角形;(2)設,由,得,求出平面的法向量和平面的法向量,,根據空間向量夾角余弦公式能求出結果.試題解析:(I)取中點,連結,依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因為,所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點,建立空間直角坐標系如圖所示,則,由可得點的坐標所以,設平面的法向量為,則,即解得,令,得,顯然平面的一個法向量為,依題意,解得或(舍去),所以,當時,二面角的余弦值為.法二:由(I)可知平面,所以,所以為二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,當時,二面角的余弦值為.21、(1),.(2)見解析【解題分析】

(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【題目詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當且僅當,即,時等號成立.故,即.【題目點撥】考查絕對值不等式的解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論