版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省臨川市第一中學(xué)2024屆高三下學(xué)期模擬數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.72.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.3.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.4.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是()A. B. C. D.5.一個(gè)四面體所有棱長(zhǎng)都是4,四個(gè)頂點(diǎn)在同一個(gè)球上,則球的表面積為()A. B. C. D.6.已知復(fù)數(shù)滿足:,則的共軛復(fù)數(shù)為()A. B. C. D.7.已知實(shí)數(shù),則下列說(shuō)法正確的是()A. B.C. D.8.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長(zhǎng)度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米9.一個(gè)正四棱錐形骨架的底邊邊長(zhǎng)為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為()A. B. C. D.10.函數(shù)f(x)=lnA. B. C. D.11.過(guò)拋物線的焦點(diǎn)的直線交該拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).若,則直線的斜率為()A. B. C. D.12.已知拋物線:的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則為()A. B.40 C.16 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿足約束條件,則的最大值是__________.14.已知實(shí)數(shù)滿足,則的最小值是______________.15.已知,則展開(kāi)式中的系數(shù)為_(kāi)_16.學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:甲說(shuō):“作品獲得一等獎(jiǎng)”;乙說(shuō):“作品獲得一等獎(jiǎng)”;丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說(shuō):“是或作品獲得一等獎(jiǎng)”,若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是___.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),判斷函數(shù),()有幾個(gè)零點(diǎn),并證明你的結(jié)論;(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實(shí)數(shù)的取值范圍.18.(12分)2019年6月,國(guó)內(nèi)的運(yùn)營(yíng)牌照開(kāi)始發(fā)放.從到,我們國(guó)家的移動(dòng)通信業(yè)務(wù)用了不到20年的時(shí)間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對(duì)的消費(fèi)意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計(jì)升級(jí)到的時(shí)段人數(shù)早期體驗(yàn)用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學(xué)生升級(jí)時(shí)間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶的).(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生愿意在2021年或2021年之前升級(jí)到的概率;(2)從樣本的早期體驗(yàn)用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級(jí)多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐,能否認(rèn)為樣本中早期體驗(yàn)用戶的人數(shù)有變化?說(shuō)明理由.19.(12分)已知函數(shù),其中.(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)求證:.20.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.21.(12分)已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于,兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說(shuō)明理由.22.(10分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè)不等式的解集為,若,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項(xiàng)公式求得公差.【題目詳解】在等差數(shù)列的前項(xiàng)和為,則則故選:B【題目點(diǎn)撥】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.2、B【解題分析】
由目標(biāo)函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個(gè)含參數(shù)的方程組,消參后即可得到的取值.【題目詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點(diǎn),使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【題目點(diǎn)撥】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個(gè)不等式對(duì)應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點(diǎn),然后得到一個(gè)含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.3、A【解題分析】
將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【題目詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【題目點(diǎn)撥】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.4、C【解題分析】
根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計(jì)算可得輸出為25時(shí)的值,進(jìn)而得判斷框內(nèi)容.【題目詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時(shí)輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項(xiàng)可知C為正確選項(xiàng),故選:C.【題目點(diǎn)撥】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡(jiǎn)單應(yīng)用,完善程序框圖,屬于基礎(chǔ)題.5、A【解題分析】
將正四面體補(bǔ)成正方體,通過(guò)正方體的對(duì)角線與球的半徑關(guān)系,求解即可.【題目詳解】解:如圖,將正四面體補(bǔ)形成一個(gè)正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長(zhǎng)都是4,∴正方體的棱長(zhǎng)為,設(shè)球的半徑為,則,解得,所以,故選:A.【題目點(diǎn)撥】本題主要考查多面體外接球問(wèn)題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對(duì)角線,從而將問(wèn)題巧妙轉(zhuǎn)化,屬于中檔題.6、B【解題分析】
轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡(jiǎn),即得解【題目詳解】復(fù)數(shù)滿足:所以故選:B【題目點(diǎn)撥】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.7、C【解題分析】
利用不等式性質(zhì)可判斷,利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【題目詳解】解:對(duì)于實(shí)數(shù),,不成立對(duì)于不成立.對(duì)于.利用對(duì)數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對(duì)于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【題目點(diǎn)撥】利用不等式性質(zhì)比較大?。⒁獠坏仁叫再|(zhì)成立的前提條件.解決此類問(wèn)題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗(yàn)證的方法.8、B【解題分析】
由于實(shí)際問(wèn)題中扇形弧長(zhǎng)較小,可將導(dǎo)線的長(zhǎng)視為扇形弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算即可.【題目詳解】因?yàn)榛¢L(zhǎng)比較短的情況下分成6等分,所以每部分的弦長(zhǎng)和弧長(zhǎng)相差很小,可以用弧長(zhǎng)近似代替弦長(zhǎng),故導(dǎo)線長(zhǎng)度約為63(厘米).故選:B.【題目點(diǎn)撥】本題主要考查了扇形弧長(zhǎng)的計(jì)算,屬于容易題.9、B【解題分析】
根據(jù)正四棱錐底邊邊長(zhǎng)為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【題目詳解】如圖所示:因?yàn)檎睦忮F底邊邊長(zhǎng)為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【題目點(diǎn)撥】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.10、C【解題分析】因?yàn)閒x=lnx2-4x+4x-23=11、D【解題分析】
根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【題目詳解】解:拋物線的焦點(diǎn),準(zhǔn)線方程為,設(shè),則,故,此時(shí),即.則直線的斜率.故選:D.【題目點(diǎn)撥】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.12、D【解題分析】
如圖所示,過(guò)分別作于,于,利用和,聯(lián)立方程組計(jì)算得到答案.【題目詳解】如圖所示:過(guò)分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【題目點(diǎn)撥】本題考查了拋物線中弦長(zhǎng)問(wèn)題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
令,所求問(wèn)題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【題目詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過(guò)時(shí),最大,且,故的最大值為.故答案為:.【題目點(diǎn)撥】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問(wèn)題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.14、【解題分析】
先畫出不等式組對(duì)應(yīng)的可行域,再利用數(shù)形結(jié)合分析解答得解.【題目詳解】畫出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的縱截距最小,目標(biāo)函數(shù)取得最小值,且.故答案為:-8【題目點(diǎn)撥】本題主要考查線性規(guī)劃問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和數(shù)形結(jié)合分析能力.15、1.【解題分析】
由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計(jì)算公式,求出展開(kāi)式中的系數(shù).【題目詳解】∵已知,則,
它表示4個(gè)因式的乘積.
故其中有2個(gè)因式取,一個(gè)因式取,剩下的一個(gè)因式取1,可得的項(xiàng).
故展開(kāi)式中的系數(shù).
故答案為:1.【題目點(diǎn)撥】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計(jì)算公式,屬于中檔題.16、C【解題分析】
假設(shè)獲得一等獎(jiǎng)的作品,判斷四位同學(xué)說(shuō)對(duì)的人數(shù).【題目詳解】分別獲獎(jiǎng)的說(shuō)對(duì)人數(shù)如下表:獲獎(jiǎng)作品ABCD甲對(duì)錯(cuò)錯(cuò)錯(cuò)乙錯(cuò)錯(cuò)對(duì)錯(cuò)丙對(duì)錯(cuò)對(duì)錯(cuò)丁對(duì)錯(cuò)錯(cuò)對(duì)說(shuō)對(duì)人數(shù)3021故獲得一等獎(jiǎng)的作品是C.【題目點(diǎn)撥】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗(yàn)條件.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個(gè)零點(diǎn),證明見(jiàn)解析;(3)【解題分析】
對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個(gè)零點(diǎn).根據(jù)函數(shù)的零點(diǎn)存在性定理即可證明;記函數(shù),求導(dǎo)后利用單調(diào)性求得,由零點(diǎn)存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導(dǎo)后分情況討論:①當(dāng)時(shí),利用函數(shù)的單調(diào)性將問(wèn)題轉(zhuǎn)化為的問(wèn)題;②當(dāng)時(shí),當(dāng)時(shí),在上恒成立,從而求得的取值范圍.【題目詳解】(1)由題意知,,列表如下:020極小值極大值所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,.(2)函數(shù)有2個(gè)零點(diǎn).證明如下:因?yàn)闀r(shí),所以,因?yàn)?所以在恒成立,在上單調(diào)遞增,由,,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個(gè)零點(diǎn),由(1)可得時(shí),,即,故時(shí),,所以,由得,平方得,所以,因?yàn)椋栽谏虾愠闪?所以函數(shù)在上單調(diào)遞減,因?yàn)?所以,由,,且在上單調(diào)遞減且連續(xù)得在上僅有一個(gè)零點(diǎn),綜上可知:函數(shù)有2個(gè)零點(diǎn).(3)記函數(shù),下面考察的符號(hào).求導(dǎo)得.當(dāng)時(shí)恒成立.當(dāng)時(shí),因?yàn)椋裕嘣谏虾愠闪?,故在上單調(diào)遞減.∵,∴,又因?yàn)樵谏线B續(xù),所以由函數(shù)的零點(diǎn)存在性定理得存在唯一的,使,∴,因?yàn)?所以∴因?yàn)楹瘮?shù)在上單調(diào)遞增,,所以在,上恒成立.①當(dāng)時(shí),在上恒成立,即在上恒成立.記,則,當(dāng)變化時(shí),,變化情況如下表:極小值∴,故,即.②當(dāng)時(shí),,當(dāng)時(shí),在上恒成立.綜合(1)(2)知,實(shí)數(shù)的取值范圍是.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極值、最值和利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)個(gè)數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉(zhuǎn)化與化歸能力、邏輯推理能力、運(yùn)算求解能力;通過(guò)構(gòu)造函數(shù),利用零點(diǎn)存在性定理判斷其零點(diǎn),從而求出函數(shù)的表達(dá)式是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.18、(1)(2)詳見(jiàn)解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒(méi)有發(fā)生變化,詳見(jiàn)解析【解題分析】
(1)由從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級(jí)到,結(jié)合古典摡型的概率計(jì)算公式,即可求解;(2)由題意的所有可能值為,利用相互獨(dú)立事件的概率計(jì)算公式,分別求得相應(yīng)的概率,得到隨機(jī)變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【題目詳解】(1)由題意可知,從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級(jí)到的概率估計(jì)為樣本中早期體驗(yàn)用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗(yàn)用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級(jí)多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級(jí)多支付10元或10元以上”,由題意可知,事件,相互獨(dú)立,且,,所以,,,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒(méi)有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認(rèn)為早期體驗(yàn)用戶人數(shù)增加.【題目點(diǎn)撥】本題主要考查了離散型隨機(jī)變量的分布列,數(shù)學(xué)期望的求解及應(yīng)用,對(duì)于求離散型隨機(jī)變量概率分布列問(wèn)題首先要清楚離散型隨機(jī)變量的可能取值,計(jì)算得出概率,列出離散型隨機(jī)變量概率分布列,最后按照數(shù)學(xué)期望公式計(jì)算出數(shù)學(xué)期望,其中列出離散型隨機(jī)變量概率分布列及計(jì)算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問(wèn)題.19、(1)時(shí),有一個(gè)零點(diǎn);當(dāng)且時(shí),有兩個(gè)零點(diǎn);(2)見(jiàn)解析【解題分析】
(1)利用的導(dǎo)函數(shù),求得的最大值的表達(dá)式,對(duì)進(jìn)行分類討論,由此判斷出的零點(diǎn)的個(gè)數(shù).(2)由,得到和,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,即有,從而證得,即.【題目詳解】(1),∴當(dāng)時(shí),,當(dāng)時(shí),在上遞增,在上遞減,.令在上遞減,在上遞增,,當(dāng)且僅當(dāng)時(shí)取等號(hào).①時(shí),有一個(gè)零點(diǎn);②時(shí),,此時(shí)有兩個(gè)零點(diǎn);③時(shí),,令在上遞增,,此時(shí)有兩個(gè)零點(diǎn);綜上:時(shí),有一個(gè)零點(diǎn);當(dāng)且時(shí),有兩個(gè)零點(diǎn);(2)由(1)可知:,令在上遞增,.【題目點(diǎn)撥】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1)證明見(jiàn)解析(2)【解題分析】
(1)證明平面即平面平面得證;(2)分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年活性食品包裝設(shè)計(jì)報(bào)告及未來(lái)十年包裝創(chuàng)新報(bào)告
- 克拉瑪依轉(zhuǎn)學(xué)制度
- 保安公司內(nèi)部培訓(xùn)制度
- 企業(yè)三審三校制度
- 鄉(xiāng)值班室制度
- 中科軟請(qǐng)假制度
- 專利對(duì)價(jià)制度
- 機(jī)動(dòng)車排污檢測(cè)培訓(xùn)課件
- 2026中國(guó)酒石酸唑吡坦原料藥行業(yè)前景動(dòng)態(tài)與供需趨勢(shì)預(yù)測(cè)報(bào)告
- 2025-2030抗心血管藥物行業(yè)運(yùn)營(yíng)狀況分析及未來(lái)銷售規(guī)模預(yù)測(cè)研究報(bào)告(-版)
- 四川省南充市2024-2025學(xué)年部編版七年級(jí)上學(xué)期期末歷史試題
- 國(guó)有企業(yè)三位一體推進(jìn)內(nèi)控風(fēng)控合規(guī)建設(shè)的問(wèn)題和分析
- 急診預(yù)檢分診課件教學(xué)
- 2025年高二數(shù)學(xué)建模試題及答案
- 儲(chǔ)能集裝箱知識(shí)培訓(xùn)總結(jié)課件
- 幼兒園中班語(yǔ)言《雪房子》課件
- 房地產(chǎn)項(xiàng)目開(kāi)發(fā)管理方案
- 堆垛車安全培訓(xùn)課件
- 貝林妥單抗護(hù)理要點(diǎn)
- 衛(wèi)生院關(guān)于成立消除艾滋病、梅毒、乙肝母嬰傳播領(lǐng)導(dǎo)小組及職責(zé)分工的通知
- 廣東省執(zhí)信中學(xué)、廣州二中、廣州六中、廣雅中學(xué)四校2025年高三物理第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題
評(píng)論
0/150
提交評(píng)論