江蘇省南通市如東縣馬塘中學(xué)2024屆高三模擬卷(一)數(shù)學(xué)試題試卷_第1頁
江蘇省南通市如東縣馬塘中學(xué)2024屆高三模擬卷(一)數(shù)學(xué)試題試卷_第2頁
江蘇省南通市如東縣馬塘中學(xué)2024屆高三模擬卷(一)數(shù)學(xué)試題試卷_第3頁
江蘇省南通市如東縣馬塘中學(xué)2024屆高三模擬卷(一)數(shù)學(xué)試題試卷_第4頁
江蘇省南通市如東縣馬塘中學(xué)2024屆高三模擬卷(一)數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省南通市如東縣馬塘中學(xué)2024屆高三模擬卷(一)數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記單調(diào)遞增的等比數(shù)列的前項和為,若,,則()A. B. C. D.2.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題3.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件4.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.5.若雙曲線:繞其對稱中心旋轉(zhuǎn)后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或6.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.1807.已知定點,,是圓上的任意一點,點關(guān)于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓8.偶函數(shù)關(guān)于點對稱,當(dāng)時,,求()A. B. C. D.9.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.10.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準(zhǔn)線與軸交于,的面積為,則()A. B. C. D.11.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.9812.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角的對邊分別是,若,,則____.14.如圖,已知扇形的半徑為1,面積為,則_____.15.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.16.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)健身館某項目收費標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費標(biāo)準(zhǔn)如下:現(xiàn)隨機抽取了100為會員統(tǒng)計它們的消費次數(shù),得到數(shù)據(jù)如下:假設(shè)該項目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:(1)估計1位會員至少消費兩次的概率(2)某會員消費4次,求這4次消費獲得的平均利潤;(3)假設(shè)每個會員每星期最多消費4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會員中隨機抽取兩位,記從這兩位會員的消費獲得的平均利潤之差的絕對值為,求的分布列及數(shù)學(xué)期望18.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認(rèn)為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.(1)設(shè)方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))19.(12分)已知函數(shù),其中,.(1)當(dāng)時,求的值;(2)當(dāng)?shù)淖钚≌芷跒闀r,求在上的值域.20.(12分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點為極點、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標(biāo).21.(12分)年,山東省高考將全面實行“選”的模式(即:語文、數(shù)學(xué)、外語為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進行考試).為了了解學(xué)生對物理學(xué)科的喜好程度,某高中從高一年級學(xué)生中隨機抽取人做調(diào)查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認(rèn)為“喜歡物理與性別有關(guān)”;(2)為了了解學(xué)生對選科的認(rèn)識,年級決定召開學(xué)生座談會.現(xiàn)從名男同學(xué)和名女同學(xué)(其中男女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.22.(10分)在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線經(jīng)過點.曲線的極坐標(biāo)方程為.(1)求直線的普通方程與曲線的直角坐標(biāo)方程;(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進而得到數(shù)列的通項和前項和,根據(jù)后兩個公式可得正確的選項.【題目詳解】因為為等比數(shù)列,所以,故即,由可得或,因為為遞增數(shù)列,故符合.此時,所以或(舍,因為為遞增數(shù)列).故,.故選C.【題目點撥】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.2、D【解題分析】

舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【題目詳解】當(dāng)時,故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【題目點撥】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.3、C【解題分析】

根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【題目詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【題目點撥】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對數(shù)不等式的解法,是基礎(chǔ)題.4、D【解題分析】

取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【題目詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【題目點撥】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.5、C【解題分析】

由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結(jié)果.【題目詳解】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【題目點撥】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的概念,考查了分類討論的數(shù)學(xué)思想.6、A【解題分析】

因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【題目詳解】,,.故選:A.【題目點撥】本題主要考查了求等差數(shù)列前項和,解題關(guān)鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.7、B【解題分析】

根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【題目詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當(dāng)在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【題目點撥】本題考查了雙曲線的定義,考查了數(shù)學(xué)運算能力和推理論證能力,考查了分類討論思想.8、D【解題分析】

推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【題目詳解】由于偶函數(shù)的圖象關(guān)于點對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時,,則.故選:D.【題目點撥】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.9、B【解題分析】

根據(jù)計算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內(nèi)的不等式.【題目詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【題目點撥】本題考查了程序框圖的簡單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.10、B【解題分析】

設(shè)點、,并設(shè)直線的方程為,由得,將直線的方程代入韋達定理,求得,結(jié)合的面積求得的值,結(jié)合焦點弦長公式可求得.【題目詳解】設(shè)點、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準(zhǔn)線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【題目點撥】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關(guān)鍵,考查計算能力,屬于中等題.11、C【解題分析】

由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【題目詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【題目點撥】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎(chǔ)題.12、C【解題分析】

試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結(jié)論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應(yīng)用點評:本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【題目詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.【題目點撥】本題主要考查了求三角形的一個內(nèi)角,解題關(guān)鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.14、【解題分析】

根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公式求出.【題目詳解】設(shè)角,則,,所以在等腰三角形中,,則.故答案為:.【題目點撥】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎(chǔ)題.15、1【解題分析】

按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【題目詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1.【題目點撥】本題主要考查利用排列知識解決實際問題,涉及分步計數(shù)乘法原理和分類計數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運用知識的能力,屬于基礎(chǔ)題.16、【解題分析】

根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【題目詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計算它的體積為.故答案為:.【題目點撥】本題考查了根據(jù)三視圖求簡單組合體的體積應(yīng)用問題,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)22.5(3)見解析,【解題分析】

(1)根據(jù)頻數(shù)計算頻率,得出概率;(2)根據(jù)優(yōu)惠標(biāo)準(zhǔn)計算平均利潤;(3)求出各種情況對應(yīng)的的值和概率,得出分布列,從而計算出數(shù)學(xué)期望.【題目詳解】解:(1)估計1位會員至少消費兩次的概率;(2)第1次消費利潤;第2次消費利潤;第3次消費利潤;第4次消費利潤;這4次消費獲得的平均利潤:(3)1次消費利潤是27,概率是;2次消費利潤是,概率是;3次消費利潤是,概率是;4次消費利潤是,概率是;由題意:故分布列為:0期望為:【題目點撥】本題考查概率、平均利潤、離散型隨機變量的分布列和數(shù)學(xué)期望的求法,考查古典概型、相互獨立事件概率乘法公式等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.18、(1)分布列見解析;(2)406.【解題分析】

(1)計算個人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為,得到分布列.(2)計算,代入數(shù)據(jù)計算比較大小得到答案.【題目詳解】(1)設(shè)每個人的血呈陰性反應(yīng)的概率為,則.所以個人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為.依題意可知,,所以的分布列為:(2)方案②中.結(jié)合(1)知每個人的平均化驗次數(shù)為:時,,此時1000人需要化驗的總次數(shù)為690次,時,,此時1000人需要化驗的總次數(shù)為604次,時,,此時1000人需要化驗的次數(shù)總為594次,即時化驗次數(shù)最多,時次數(shù)居中,時化驗次數(shù)最少,而采用方案①則需化驗1000次,故在這三種分組情況下,相比方案①,當(dāng)時化驗次數(shù)最多可以平均減少次.【題目點撥】本題考查了分布列,數(shù)學(xué)期望,意在考查學(xué)生的計算能力和應(yīng)用能力.19、(1)(2)【解題分析】

(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【題目詳解】(1)因為,所以(2)因為即因為,所以所以因為所以所以當(dāng)時,.當(dāng)時,(最大值)當(dāng)時,在是增函數(shù),在是減函數(shù).的值域是.【題目點撥】本題主要考查了簡單角的三角函數(shù)值的求解方法,兩角和與差的正弦、余弦公式,三角函數(shù)的圖象與性質(zhì)等知識,考查了運算求解能力,屬于中檔題.20、(1),;(2),,.【解題分析】

(1)把曲線的參數(shù)方程與曲線的極坐標(biāo)方程分別轉(zhuǎn)化為直角坐標(biāo)方程;(2)利用圖象求出三個點的極徑與極角.【題目詳解】解:(1)由消去參數(shù)得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標(biāo)方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點以及直線與圓的兩個交點,即為所求.∵,則,直線的傾斜角為,即點的極角為,所以點的極角為,點的極角為,所以三個點的極坐標(biāo)為,,.【題目點撥】本題考查圓的參數(shù)方程和普通方程的轉(zhuǎn)化、直線極坐標(biāo)方程和直角坐標(biāo)方程的轉(zhuǎn)化,消去參數(shù)方程中的參數(shù),就可把參數(shù)方程化為普通方程,消去參數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論