版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
寶雞市重點中學2024年高三上數(shù)學期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù)滿足,則()A. B.2 C.4 D.32.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.403.若向量,,則與共線的向量可以是()A. B. C. D.4.如圖是一個算法流程圖,則輸出的結果是()A. B. C. D.5.A. B. C. D.6.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.127.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內(nèi)雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.2338.已知拋物線的焦點與雙曲線的一個焦點重合,且拋物線的準線被雙曲線截得的線段長為,那么該雙曲線的離心率為()A. B. C. D.9.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.310.設,滿足約束條件,則的最大值是()A. B. C. D.11.已知,則下列不等式正確的是()A. B.C. D.12.設等比數(shù)列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要二、填空題:本題共4小題,每小題5分,共20分。13.設復數(shù)滿足,其中是虛數(shù)單位,若是的共軛復數(shù),則____________.14.若隨機變量的分布列如表所示,則______,______.-10115.記等差數(shù)列和的前項和分別為和,若,則______.16.平面直角坐標系中,O為坐標原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)[選修4-4:極坐標與參數(shù)方程]在直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若射線與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值18.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.19.(12分)設等比數(shù)列的前項和為,若(Ⅰ)求數(shù)列的通項公式;(Ⅱ)在和之間插入個實數(shù),使得這個數(shù)依次組成公差為的等差數(shù)列,設數(shù)列的前項和為,求證:.20.(12分)在四邊形中,,;如圖,將沿邊折起,連結,使,求證:(1)平面平面;(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.21.(12分)已知函數(shù),曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設,求證:.22.(10分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關于年份代號的統(tǒng)計數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關).年份年份代號年利潤(單位:億元)(Ⅰ)求關于的線性回歸方程,并預測該公司年(年份代號記為)的年利潤;(Ⅱ)當統(tǒng)計表中某年年利潤的實際值大于由(Ⅰ)中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預測的該公司年的年利潤視作該年利潤的實際值,現(xiàn)從年至年這年中隨機抽取年,求恰有年為級利潤年的概率.參考公式:,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由復數(shù)除法求出,再由模的定義計算出模.【詳解】.故選:A.【點睛】本題考查復數(shù)的除法法則,考查復數(shù)模的運算,屬于基礎題.2、C【解析】
設出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應用,涉及等差數(shù)列的前項和公式的應用,屬于容易題.3、B【解析】
先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.4、A【解析】
執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結果,故選A.【點睛】本題主要考查了循環(huán)結構的程序框圖的結果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.5、A【解析】
直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,是基礎的計算題.6、D【解析】
推導出,且,,,設中點為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設中點為,則平面,∴,∴,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應用,屬于中檔題.7、C【解析】
計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.8、A【解析】
由拋物線的焦點得雙曲線的焦點,求出,由拋物線準線方程被曲線截得的線段長為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準線方程為,拋物線的準線過雙曲線的左焦點,.拋物線的準線被雙曲線截得的線段長為,,又,,則雙曲線的離心率為.故選:.【點睛】本題考查拋物線的性質(zhì)及利用過雙曲線的焦點的弦長求離心率.弦過焦點時,可結合焦半徑公式求解弦長.9、D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.10、D【解析】
作出不等式對應的平面區(qū)域,由目標函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法,屬于基礎題.11、D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.12、A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因為恒成立,故可以推出且,若成立,當時,有,當時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關系,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由于,則.14、【解析】
首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【點睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的性質(zhì)等知識,意在考查學生的轉化能力和計算求解能力.15、【解析】
結合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應用,考查了學生的計算求解能力,屬于基礎題.16、【解析】
根據(jù)向量共線定理得A,B,C三點共線,再根據(jù)點斜式得結果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:【點睛】本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的極坐標方程為.曲線的直角坐標方程為.(2)【解析】
(1)先得到的一般方程,再由極坐標化直角坐標的公式得到一般方程,將代入得,得到曲線的直角坐標方程;(2)設點、的極坐標分別為,,將分別代入曲線、極坐標方程得:,,,之后進行化一,可得到最值,此時,可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標方程為.由得,將代入得,故曲線的直角坐標方程為.(2)設點、的極坐標分別為,,將分別代入曲線、極坐標方程得:,,則,其中為銳角,且滿足,,當時,取最大值,此時,【點睛】這個題目考查了參數(shù)方程化為普通方程的方法,極坐標化為直角坐標的方法,以及極坐標中極徑的幾何意義,極徑代表的是曲線上的點到極點的距離,在參數(shù)方程和極坐標方程中,能表示距離的量一個是極徑,一個是t的幾何意義,其中極徑多數(shù)用于過極點的曲線,而t的應用更廣泛一些.18、(1)證明見解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標系,求出平面的法向量與,坐標代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因為平面,所以平面平面.易知,且為的中點,所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設的中點為,以為原點,以,,所在直線分別為,,軸,建立空間直角坐標系,則,,,,,所以,,.設平面的法向量為,由得取.設直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的證明,直線與平面所成的角,要求一定的空間想象能力、運算求解能力和推理論證能力,屬于基礎題.19、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ),,兩式相減化簡整理利用等比數(shù)列的通項公式即可得出.(Ⅱ)由題設可得,可得,利用錯位相減法即可得出.【詳解】解:(Ⅰ)因為,故,兩式相減可得,,故,因為是等比數(shù)列,∴,又,所以,故,所以;(Ⅱ)由題設可得,所以,所以,①則,②①-②得:,所以,得證.【點睛】本題考查了數(shù)列遞推關系、等比數(shù)列的通項公式求和公式、錯位相減法,考查了推理能力與計算能力,屬于中檔題.20、(1)證明見詳解;(2)【解析】
(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點O,連接、,可得,可求出.在中,由勾股定理可證得,結合,可證明平面.再根據(jù)面面垂直的判定定理,可證平面平面.(2)以為坐標原點,建立如圖所示的空間直角坐標系,由點F在線段上,設,得出的坐標,進而求出平面的一個法向量.用向量法表示出與平面所成角的正弦值,由其等于,解得.再結合為平面的一個法向量,用向量法即可求出與的夾角,結合圖形,寫出二面角的大小.【詳解】證明:(1)在中,為正三角形,且在中,為等腰直角三角形,且取的中點,連接,,,平面平面平面..平面平面(2)以為坐標原點,建立如圖所示的空間直角坐標系,則,,,設.則設平面的一個法向量為.則,令,解得與平面所成角的正弦值為,整理得解得或(含去)又為平面的一個法向量,二面角的大小為.【點睛】本題考查了線面垂直的判定,面面垂直的判定,向量法解決線面角、二面角的問題,屬于中檔題.21、(1)(2)為減函數(shù),為增函數(shù).(3)證明見解析【解析】
(1)求出導函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導數(shù),由導數(shù)的正負確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結論.【詳解】解:(1)對求導,得.因此.又因為,所以曲線在點處的切線方程為,即.由題意,.顯然,適合上式.令,求導得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因為,所以為減函數(shù).因為,所以為增函數(shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當時,,即.令,得,即.因此,當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市場運營部規(guī)章制度
- 醫(yī)療運營數(shù)據(jù)管理制度
- 美團買菜店鋪運營管理制度
- 科技研發(fā)公司運營制度
- 醫(yī)藥行業(yè)運營管理制度
- 證書運營管理制度
- 水務公司運營值班制度
- 運營制度排版模板
- 珠寶店終端運營管理制度
- 朋友圈運營管理制度
- 高校行政人員筆試試題(附答案)
- 2025年農(nóng)村會計考試試題題庫及答案
- 檢驗科電解質(zhì)教學課件
- 浙江省杭州市西湖區(qū)杭州學軍中學2025-2026學年物理高二上期末質(zhì)量跟蹤監(jiān)視試題含解析
- 創(chuàng)傷病人的評估和護理
- 房建工程施工工藝流程
- 設備委托開發(fā)合同(標準版)
- 理解人際溝通中的情緒管理和表達技巧應用
- 2025 年四年級語文閱讀理解(分析人物形象)突破卷
- 手術室三方核查規(guī)范
- 2025年黑龍江省大慶市中考數(shù)學試題【含答案、解析】
評論
0/150
提交評論