安徽省宣城二中2024屆高考模擬最后十套:數(shù)學(xué)試題(七)考前提分仿真卷_第1頁(yè)
安徽省宣城二中2024屆高考模擬最后十套:數(shù)學(xué)試題(七)考前提分仿真卷_第2頁(yè)
安徽省宣城二中2024屆高考模擬最后十套:數(shù)學(xué)試題(七)考前提分仿真卷_第3頁(yè)
安徽省宣城二中2024屆高考模擬最后十套:數(shù)學(xué)試題(七)考前提分仿真卷_第4頁(yè)
安徽省宣城二中2024屆高考模擬最后十套:數(shù)學(xué)試題(七)考前提分仿真卷_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省宣城二中2024屆高考模擬最后十套:數(shù)學(xué)試題(七)考前提分仿真卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號(hào)有()A.①② B.①④ C.②③ D.①②④2.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.3.已知為兩條不重合直線,為兩個(gè)不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.4.已知等差數(shù)列的前n項(xiàng)和為,且,則()A.4 B.8 C.16 D.25.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.6.若的展開式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.37.在正方體中,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,且兩球相切于點(diǎn).若以為焦點(diǎn),為準(zhǔn)線的拋物線經(jīng)過(guò),設(shè)球的半徑分別為,則()A. B. C. D.8.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.9.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓與拋物線的兩個(gè)交點(diǎn)連線正好過(guò)點(diǎn),則橢圓的離心率為()A. B. C. D.10.空氣質(zhì)量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質(zhì)量越好,下圖是某市10月1日-20日指數(shù)變化趨勢(shì),下列敘述錯(cuò)誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上(指數(shù))的天數(shù)占C.該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好D.總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好11.已知橢圓的中心為原點(diǎn),為的左焦點(diǎn),為上一點(diǎn),滿足且,則橢圓的方程為()A. B. C. D.12.若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),若存在實(shí)數(shù)m,使得關(guān)于x的方程有4個(gè)不相等的實(shí)根,且這4個(gè)根的平方和存在最小值,則實(shí)數(shù)a的取值范圍是______.14.若函數(shù),其中且,則______________.15.已知關(guān)于空間兩條不同直線m、n,兩個(gè)不同平面、,有下列四個(gè)命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號(hào)為______.16.袋中裝有兩個(gè)紅球、三個(gè)白球,四個(gè)黃球,從中任取四個(gè)球,則其中三種顏色的球均有的概率為________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.18.(12分)已知公差不為零的等差數(shù)列的前n項(xiàng)和為,,是與的等比中項(xiàng).(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.19.(12分)已知函數(shù)f(x)=x-1+x+2,記f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正實(shí)數(shù)a,b滿足1a+120.(12分)已知橢圓的上頂點(diǎn)為,圓與軸的正半軸交于點(diǎn),與有且僅有兩個(gè)交點(diǎn)且都在軸上,(為坐標(biāo)原點(diǎn)).(1)求橢圓的方程;(2)已知點(diǎn),不過(guò)點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),證明:直線與直線的斜率互為相反數(shù).21.(12分)已知函數(shù).(1)求不等式的解集;(2)若對(duì)任意恒成立,求的取值范圍.22.(10分)已知函數(shù).(1)當(dāng)時(shí),不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項(xiàng)和為,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】

求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【題目詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【題目點(diǎn)撥】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.2、C【解題分析】

由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進(jìn)而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【題目詳解】,,由于,則,同理可知,,函數(shù)的定義域?yàn)?,?duì)恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,.故選:C.【題目點(diǎn)撥】本題考查代數(shù)式最值的計(jì)算,涉及指對(duì)同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.3、D【解題分析】

根據(jù)面面垂直的判定定理,對(duì)選項(xiàng)中的命題進(jìn)行分析、判斷正誤即可.【題目詳解】對(duì)于A,當(dāng),,時(shí),則平面與平面可能相交,,,故不能作為的充分條件,故A錯(cuò)誤;對(duì)于B,當(dāng),,時(shí),則,故不能作為的充分條件,故B錯(cuò)誤;對(duì)于C,當(dāng),,時(shí),則平面與平面相交,,,故不能作為的充分條件,故C錯(cuò)誤;對(duì)于D,當(dāng),,,則一定能得到,故D正確.故選:D.【題目點(diǎn)撥】本題考查了面面垂直的判斷問(wèn)題,屬于基礎(chǔ)題.4、A【解題分析】

利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【題目詳解】.故選:.【題目點(diǎn)撥】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計(jì)算,難度容易.5、A【解題分析】

設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計(jì)算出,再利用公式計(jì)算即可.【題目詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【題目點(diǎn)撥】本題考查利用定義計(jì)算條件概率的問(wèn)題,涉及到雙曲線的定義,是一道容易題.6、C【解題分析】

先研究的展開式的通項(xiàng),再分中,取和兩種情況求解.【題目詳解】因?yàn)榈恼归_式的通項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:,解得,故選:C.【題目點(diǎn)撥】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、D【解題分析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點(diǎn)都在體對(duì)角線上,通過(guò)幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【題目詳解】根據(jù)拋物線的定義,點(diǎn)到點(diǎn)的距離與到直線的距離相等,其中點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個(gè)球心和兩球的切點(diǎn)均在體對(duì)角線上,兩個(gè)球在平面處的截面如圖所示,則,所以.又因?yàn)椋虼?,得,所?故選:D【題目點(diǎn)撥】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運(yùn)算的核心素養(yǎng)8、A【解題分析】

設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過(guò)點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【題目詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過(guò)點(diǎn),∴直線的方程為:,即,故選:A.【題目點(diǎn)撥】本題考查直線與拋物線相交的中點(diǎn)弦問(wèn)題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.9、B【解題分析】

根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【題目詳解】易知,且故有,則故選:B【題目點(diǎn)撥】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題10、C【解題分析】

結(jié)合題意,根據(jù)題目中的天的指數(shù)值,判斷選項(xiàng)中的命題是否正確.【題目詳解】對(duì)于,由圖可知天的指數(shù)值中有個(gè)低于,個(gè)高于,其中第個(gè)接近,第個(gè)高于,所以中位數(shù)略高于,故正確.對(duì)于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對(duì)于,由圖可知該市月的前天的空氣質(zhì)量越來(lái)越好,從第天到第天空氣質(zhì)量越來(lái)越差,故錯(cuò)誤.對(duì)于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好,故正確.故選:【題目點(diǎn)撥】本題考查了對(duì)折線圖數(shù)據(jù)的分析,讀懂題意是解題關(guān)鍵,并能運(yùn)用所學(xué)知識(shí)對(duì)命題進(jìn)行判斷,本題較為基礎(chǔ).11、B【解題分析】由題意可得c=,設(shè)右焦點(diǎn)為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點(diǎn)睛:橢圓的定義:到兩定點(diǎn)距離之和為常數(shù)的點(diǎn)的軌跡,當(dāng)和大于兩定點(diǎn)間的距離時(shí),軌跡是橢圓,當(dāng)和等于兩定點(diǎn)間的距離時(shí),軌跡是線段(兩定點(diǎn)間的連線段),當(dāng)和小于兩定點(diǎn)間的距離時(shí),軌跡不存在.12、A【解題分析】試題分析:由題意得有兩個(gè)不相等的實(shí)數(shù)根,所以必有解,則,且,∴.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)極值點(diǎn)【方法點(diǎn)睛】函數(shù)極值問(wèn)題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點(diǎn),再判斷導(dǎo)數(shù)為0的點(diǎn)的左、右兩側(cè)的導(dǎo)數(shù)符號(hào).(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗(yàn)f′(x)在f′(x)=0的根的附近兩側(cè)的符號(hào)―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(diǎn)(x0,y0)處取得極值,則f′(x0)=0,且在該點(diǎn)左、右兩側(cè)的導(dǎo)數(shù)值符號(hào)相反.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

先確定關(guān)于x的方程當(dāng)a為何值時(shí)有4個(gè)不相等的實(shí)根,再將這四個(gè)根的平方和表示出來(lái),利用函數(shù)思想來(lái)判斷當(dāng)a為何值時(shí)這4個(gè)根的平方和存在最小值即可.【題目詳解】由題意,當(dāng)時(shí),,此時(shí),此時(shí)函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個(gè)不相等的實(shí)根,舍;當(dāng)時(shí),函數(shù)圖象如下所示:從左到右方程,有4個(gè)不相等的實(shí)根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時(shí)有最小值,則對(duì)稱軸,解得.綜上所述,實(shí)數(shù)a的取值范圍是.【題目點(diǎn)撥】本題考查了函數(shù)和方程的知識(shí),但需要一定的邏輯思維能力,屬于較難題.14、【解題分析】

先化簡(jiǎn)函數(shù)的解析式,在求出,從而求得的值.【題目詳解】由題意,函數(shù)可化簡(jiǎn)為,所以,所以.故答案為:0.【題目點(diǎn)撥】本題主要考查了二項(xiàng)式定理的應(yīng)用,以及導(dǎo)數(shù)的運(yùn)算和函數(shù)值的求解,其中解答中正確化簡(jiǎn)函數(shù)的解析式,準(zhǔn)確求解導(dǎo)數(shù)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.15、③④【解題分析】

由直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義判斷.【題目詳解】①若且,的位置關(guān)系是平行、相交或異面,①錯(cuò);②若且,則或者,②錯(cuò);③若,設(shè)過(guò)的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【題目點(diǎn)撥】本題考查直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關(guān)系,掌握空間線線、線面、面面位置關(guān)系是解題基礎(chǔ).16、【解題分析】

基本事件總數(shù)n126,其中三種顏色的球都有包含的基本事件個(gè)數(shù)m72,由此能求出其中三種顏色的球都有的概率.【題目詳解】解:袋中有2個(gè)紅球,3個(gè)白球和4個(gè)黃球,從中任取4個(gè)球,基本事件總數(shù)n126,其中三種顏色的球都有,可能是2個(gè)紅球,1個(gè)白球和1個(gè)黃球或1個(gè)紅球,2個(gè)白球和1個(gè)黃球或1個(gè)紅球,1個(gè)白球和2個(gè)黃球,所以包含的基本事件個(gè)數(shù)m72,∴其中三種顏色的球都有的概率是p.故答案為:.【題目點(diǎn)撥】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)直線的直角坐標(biāo)方程為;曲線的普通方程為;(Ⅱ).【解題分析】

(I)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【題目詳解】由可得直線的直角坐標(biāo)方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點(diǎn)在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設(shè)是方程的兩根,則有.【題目點(diǎn)撥】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.18、(1);(2).【解題分析】

(1)根據(jù)題意,建立首項(xiàng)和公差的方程組,通過(guò)基本量即可寫出前項(xiàng)和;(2)由(1)中所求,結(jié)合累加法求得.【題目詳解】(1)由題意可得即又因?yàn)?,所以,所?(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【題目點(diǎn)撥】本題考查等差數(shù)列通項(xiàng)公式和前項(xiàng)和的基本量的求解,涉及利用累加法求通項(xiàng)公式,屬綜合基礎(chǔ)題.19、(Ⅰ){x|-3≤x≤2}(Ⅱ)見證明【解題分析】

(Ⅰ)由題意結(jié)合不等式的性質(zhì)零點(diǎn)分段求解不等式的解集即可;(Ⅱ)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【題目詳解】(Ⅰ)①當(dāng)x>1時(shí),f(x)=(x-1)+(x+2)=2x+1≤5,即x≤2,∴1<x≤2;②當(dāng)-2≤x≤1時(shí),f(x)=(1-x)+(x+2)=3≤5,∴-2≤x≤1;③當(dāng)x<-2時(shí),f(x)=(1-x)-(x+2)=-2x-1≤5,即x≥-3,∴-3≤x<-2.綜上所述,原不等式的解集為{x|-3≤x≤2}.(Ⅱ)∵f(x)=x-1當(dāng)且僅當(dāng)-2≤x≤1時(shí),等號(hào)成立.∴f(x)的最小值m=3.∴[(即2a當(dāng)且僅當(dāng)2a×1又1a+1b=∴2a【題目點(diǎn)撥】本題主要考查絕對(duì)值不等式的解法,柯西不等式及其應(yīng)用,絕對(duì)值三角不等式求最值的方法等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.20、(1)(2)證明見解析【解題分析】

(1)根據(jù)條件可得,進(jìn)而得到,即可得到橢圓方程;(2)設(shè)直線的方程為,聯(lián)立,分別表示出直線和直線斜率,相加利用根與系數(shù)關(guān)系即可得到.【題目詳解】解:(1)圓與有且僅有兩個(gè)交點(diǎn)且都在軸上,所以,又,,解得,故橢圓的方程為;(2)設(shè)直線的方程為,聯(lián)立,整理可得,則,解得,設(shè)點(diǎn),,則,,所以,故直線與直線的斜

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論