版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年四川省萬源市第一中學數(shù)學九上期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在△ABO中,∠B=90o,OB=3,OA=5,以AO上一點P為圓心,PO長為半徑的圓恰好與AB相切于點C,則下列結論正確的是().A.⊙P的半徑為B.經過A,O,B三點的拋物線的函數(shù)表達式是C.點(3,2)在經過A,O,B三點的拋物線上D.經過A,O,C三點的拋物線的函數(shù)表達式是2.已知二次函數(shù)y=ax2+bx+c(a>0)經過點M(﹣1,2)和點N(1,﹣2),則下列說法錯誤的是()A.a+c=0B.無論a取何值,此二次函數(shù)圖象與x軸必有兩個交點,且函數(shù)圖象截x軸所得的線段長度必大于2C.當函數(shù)在x<時,y隨x的增大而減小D.當﹣1<m<n<0時,m+n<3.方程x2﹣2x﹣4=0的根的情況()A.只有一個實數(shù)根 B.有兩個不相等的實數(shù)根C.有兩個相等的實數(shù)根 D.沒有實數(shù)根4.若拋物線y=x2+bx+c與x軸只有一個公共點,且過點A(m,n),B(m+8,n),則n=()A.0 B.3 C.16 D.95.如圖,AB是⊙O的直徑,EF,EB是⊙O的弦,且EF=EB,EF與AB交于點C,連接OF,若∠AOF=40°,則∠F的度數(shù)是()A.20° B.35° C.40° D.55°6.如圖所示,已知△ABC中,BC=12,BC邊上的高h=6,D為BC上一點,EF∥BC,交AB于點E,交AC于點F,設點E到邊BC的距離為x.則△DEF的面積y關于x的函數(shù)圖象大致為()A. B. C. D.7.下列拋物線中,與拋物線y=-3x2+1的形狀、開口方向完全相同,且頂點坐標為(-1,2)的是()A.y=-3(x+1)2+2B.y=-3(x-2)2+2C.y=-(3x+1)2+2D.y=-(3x-1)2+28.下列說法正確的是()A.一顆質地均勻的骰子已連續(xù)拋擲了2000次,其中拋擲出5點的次數(shù)最少,則第2001次一定拋擲出5點B.拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的時間降雨D.某種彩票中獎的概率是1%,因此買100張該種彩票一定會中獎9.如圖,在△ABC中,點D、E分別在邊AB、AC上,下列條件中不能判斷△ABC∽△AED的是()A.∠AED=∠B B.∠ADE=∠C C. D.10.已知正比例函數(shù)y=kx的圖象經過第二、四象限,則一次函數(shù)y=kx﹣k的圖象可能是圖中的()A. B.C. D.11.下列四個函數(shù)圖象中,當x>0時,函數(shù)值y隨自變量x的增大而減小的是()A. B.C. D.12.如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A、B兩點,C(m,﹣3)是圖象上的一點,且AC⊥BC,則a的值為()A.2 B. C.3 D.二、填空題(每題4分,共24分)13.某工廠去年10月份機器產量為500臺,12月份的機器產量達到720臺,設11、12月份平均每月機器產量增長的百分率為x,則根據(jù)題意可列方程_______________14.如圖,矩形中,,,是邊上的一點,且,點在矩形所在的平面中,且,則的最大值是_________.15.一人乘雪橇沿坡比1:的斜坡筆直滑下,滑下的距離s(米)與時間t(秒)間的關系為s=10t+2t2,若滑到坡底的時間為4秒,則此人下降的高度為_______.16.設m、n是一元二次方程x2+3x-7=0的兩個根,則m2+4m+n=_____.17.若關于的一元二次方程(m-1)x2-4x+1=0有兩個不相等的實數(shù)根,則m的取值范圍為_____________.18.如圖,拋物線解析式為y=x2,點A1的坐標為(1,1),連接OA1;過A1作A1B1⊥OA1,分別交y軸、拋物線于點P1、B1;過B1作B1A2⊥A1B1分別交y軸、拋物線于點P2、A2;過A2作A2B2⊥B1A2,分別交y軸、拋物線于點P3、B2…;則點Pn的坐標是_____.三、解答題(共78分)19.(8分)已知關于x的一元二次方程x2-2x+m-1=1.(1)若此方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;(2)當Rt△ABC的斜邊長c=,且兩直角邊a和b恰好是這個方程的兩個根時,求Rt△ABC的面積.20.(8分)如圖,一次函數(shù)圖象經過點,與軸交于點,且與正比例函數(shù)的圖象交于點,點的橫坐標是.請直接寫出點的坐標(,);求該一次函數(shù)的解析式;求的面積.21.(8分)如圖,在△ABC和△ADE中,,點B、D、E在一條直線上,求證:△ABD∽△ACE.22.(10分)計算:2cos60°+4sin60°?tan30°﹣cos45°23.(10分)如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上(每個小方格都是邊長為一個單位長度的正方形).(1)請畫出△ABC關于原點對稱的△A1B1C1;(1)請畫出△ABC繞點B逆時針旋轉90°后的△A1B1C1.24.(10分)一個盒子中裝有兩個紅球,一個白球和一個藍球,這些球除顏色外都相同,從中隨機摸出一個球,記下顏色后放回,再從中隨機摸出一個球,請你用列表法和畫樹狀圖法求兩次摸到的球的顏色能配成紫色的概率(說明:紅色和藍色能配成紫色)25.(12分)如圖1,在矩形中,為邊上一點,.將沿翻折得到,的延長線交邊于點,過點作交于點.(1)求證:;(2)如圖2,連接分別交、于點、.若,探究與之間的數(shù)量關系.26.某公司研發(fā)了一種新產品,成本是200元/件,為了對新產品進行合理定價,公司將該產品按擬定的價格進行銷售,調查發(fā)現(xiàn)日銷量y(件)與單價x(元/件)之間存在一次函數(shù)關系y=﹣2x+800(200<x<400).(1)要使新產品日銷售利潤達到15000元,則新產品的單價應定為多少元?(2)為使公司日銷售獲得最大利潤,該產品的單價應定為多少元?
參考答案一、選擇題(每題4分,共48分)1、D【分析】A、連接PC,根據(jù)已知條件可知△ACP∽△ABO,再由OP=PC,可列出相似比得出;B、由射影定理及勾股定理可得點B坐標,由A、B、O三點坐標,可求出拋物線的函數(shù)表達式;C、由射影定理及勾股定理可計算出點C坐標,將點C代入拋物線表達式即可判斷;D、由A,O,C三點坐標可求得經過A,O,C三點的拋物線的函數(shù)表達式.【詳解】解:如圖所示,連接PC,∵圓P與AB相切于點C,所以PC⊥AB,又∵∠B=90o,所以△ACP∽△ABO,設OP=x,則OP=PC=x,又∵OB=3,OA=5,∴AP=5-x,∴,解得,∴半徑為,故A選項錯誤;過B作BD⊥OA交OA于點D,∵∠B=90o,BD⊥OA,由勾股定理可得:,由面積相等可得:∴,∴由射影定理可得,∴∴,設經過A,O,B三點的拋物線的函數(shù)表達式為;將A(5,0),O(0,0),代入上式可得:解得,,c=0,經過A,O,B三點的拋物線的函數(shù)表達式為,故B選項錯誤;過點C作CE⊥OA交OA于點E,∵,∴由射影定理可知,∴,所以,由勾股定理得,∴點C坐標為,故選項C錯誤;設經過A,O,C三點的拋物線的函數(shù)表達式是,將A(5,0),O(0,0),代入得,解得:,∴經過A,O,C三點的拋物線的函數(shù)表達式是,故選項D正確.【點睛】本題考查相似三角形、二次函數(shù)、圓等幾何知識,綜合性較強,解題的關鍵是要能靈活運用相似三角形的性質計算.2、C【分析】根據(jù)二次函數(shù)的圖象和性質對各項進行判斷即可.【詳解】解:∵函數(shù)經過點M(﹣1,2)和點N(1,﹣2),∴a﹣b+c=2,a+b+c=﹣2,∴a+c=0,b=﹣2,∴A正確;∵c=﹣a,b=﹣2,∴y=ax2﹣2x﹣a,∴△=4+4a2>0,∴無論a為何值,函數(shù)圖象與x軸必有兩個交點,∵x1+x2=,x1x2=﹣1,∴|x1﹣x2|=2>2,∴B正確;二次函數(shù)y=ax2+bx+c(a>0)的對稱軸x=﹣=,當a>0時,不能判定x<時,y隨x的增大而減小;∴C錯誤;∵﹣1<m<n<0,a>0,∴m+n<0,>0,∴m+n<;∴D正確,故選:C.【點睛】本題考查了二次函數(shù)的問題,掌握二次函數(shù)的圖象和性質是解題的關鍵.3、B【詳解】Δ=b2-4ac=(-2)2-4×1×(-4)=20>0,所以方程有兩個不相等的實數(shù)根.故選B.【點睛】一元二次方程根的情況:(1)b2-4ac>0,方程有兩個不相等的實數(shù)根;(2)b2-4ac=0,方程有兩個相等的實數(shù)根;(3)b2-4ac<0,方程沒有實數(shù)根.注:若方程有實數(shù)根,那么b2-4ac≥0.4、C【分析】根據(jù)點A、B的坐標易求該拋物線的對稱軸是x=m+1.故設拋物線解析式為y=(x+m+1)2,直接將A(m,n)代入,通過解方程來求n的值.【詳解】∵拋物線y=x2+bx+c過點A(m,n),B(m+8,n),∴對稱軸是x==m+1.又∵拋物線y=x2+bx+c與x軸只有一個交點,∴設拋物線解析式為y=(x﹣m﹣1)2,把A(m,n)代入,得n=(m﹣m+1)2=2,即n=2.故選:C.【點睛】本題考查了拋物線與x軸的交點.解答該題的技巧性在于找到拋物線的頂點坐標,根據(jù)頂點坐標設拋物線的解析式.5、B【解析】連接FB,由鄰補角定義可得∠FOB=140°,由圓周角定理求得∠FEB=70°,根據(jù)等腰三角形的性質分別求出∠OFB、∠EFB的度數(shù),繼而根據(jù)∠EFO=∠EBF-∠OFB即可求得答案.【詳解】連接FB,則∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故選B.【點睛】本題考查了圓周角定理、等腰三角形的性質等知識,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.6、D【分析】可過點A向BC作AH⊥BC于點H,所以根據(jù)相似三角形的性質可求出EF,進而求出函數(shù)關系式,由此即可求出答案.【詳解】過點A向BC作AH⊥BC于點H,所以根據(jù)相似比可知:,即EF=2(6-x)所以y=×2(6-x)x=-x2+6x.(0<x<6)該函數(shù)圖象是拋物線的一部分,故選D.【點睛】此題考查根據(jù)幾何圖形的性質確定函數(shù)的圖象和函數(shù)圖象的讀圖能力.要能根據(jù)幾何圖形和圖形上的數(shù)據(jù)分析得出所對應的函數(shù)的類型和所需要的條件,結合實際意義畫出正確的圖象.7、A【解析】由條件可設出拋物線的頂點式,再由已知可確定出其二次項系數(shù),則可求得拋物線解析式.【詳解】∵拋物線頂點坐標為(﹣1,1),∴可設拋物線解析式為y=a(x+1)1+1.∵與拋物線y=﹣3x1+1的形狀、開口方向完全相同,∴a=﹣3,∴所求拋物線解析式為y=﹣3(x+1)1+1.故選A.【點睛】本題考查了二次函數(shù)的性質,掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x-h(huán))1+k中,頂點坐標為(h,k),對稱軸為x=h.8、B【分析】根據(jù)概率的求解方法逐一進行求解即可得.【詳解】A.無論一顆質地均勻的骰子多少次,每次拋擲出5點的概率都是,故A錯誤;B.拋擲一枚圖釘,因為圖釘質地不均勻,釘尖觸地和釘尖朝上的概率不相等,故B正確;C.明天降雨的概率是80%,表示明天有80%的可能性降雨,故C錯誤D.某種彩票中獎的概率是1%,表明中獎的概率為1%,故D錯誤故答案為:B.【點睛】本題考查了對概率定義的理解,熟練掌握是解題的關鍵.9、D【分析】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似;有兩組角對應相等的兩個三角形相似.根據(jù)此,分別進行判斷即可.【詳解】解:由題意得∠DAE=∠CAB,A、當∠AED=∠B時,△ABC∽△AED,故本選項不符合題意;B、當∠ADE=∠C時,△ABC∽△AED,故本選項不符合題意;C、當=時,△ABC∽△AED,故本選項不符合題意;D、當=時,不能推斷△ABC∽△AED,故本選項符合題意;故選D.【點睛】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似;有兩組角對應相等的兩個三角形相似.10、A【分析】根據(jù)正比例函數(shù)y=kx的圖象經過第二、四象限可判斷出k的符號,進而可得出結論.【詳解】解:∵正比例函數(shù)y=kx的圖象經過第二、四象限,∴k<0,∴﹣k>0,∴一次函數(shù)y=kx﹣k的圖象經過第一、二、四象限.故選:A.【點睛】本題考查的是一次函數(shù)的圖象與系數(shù)的關系,先根據(jù)題意判斷出k的符號是解答此題的關鍵.11、C【分析】直接根據(jù)圖象判斷,當x>0時,從左到右圖象是下降的趨勢的即為正確選項.【詳解】A、當x>0時,y隨x的增大而增大,錯誤;B、當x>0時,y隨x的增大而增大,錯誤;C、當x>0時,y隨x的增大而減小,正確;D、當x>0時,y隨x的增大先減小而后增大,錯誤;故選:C.【點睛】本題主要考查根據(jù)函數(shù)圖象判斷增減性,掌握函數(shù)的圖象和性質是解題的關鍵.12、D【分析】在直角三角形ABC中,利用勾股定理AD2+DC2+CD2+BD2=AB2,即m2﹣m(x1+x2)+18+x1x2=0;然后根據(jù)根與系數(shù)的關系即可求得a的值.【詳解】過點C作CD⊥AB于點D.∵AC⊥BC,∴AD2+DC2+CD2+BD2=AB2,設ax2+bx+c=0的兩根分別為x1與x2(x1≤x2),∴A(x1,0),B(x2,0).依題意有(x1﹣m)2+9+(x2﹣m)2+9=(x1﹣x2)2,化簡得:m2﹣m(x1+x2)+9+x1x2=0,∴m2m+90,∴am2+bn+c=﹣9a.∵(m,﹣3)是圖象上的一點,∴am2+bm+c=﹣3,∴﹣9a=﹣3,∴a.故選:D.【點睛】本題是二次函數(shù)的綜合試題,考查了二次函數(shù)的性質和圖象,解答本題的關鍵是注意數(shù)形結合思想.二、填空題(每題4分,共24分)13、【分析】根據(jù)增長率公式即可列出方程.【詳解】解:根據(jù)題意可列方程為:,故答案為:.【點睛】本題考查一元二次方程的應用——增長率問題.若連續(xù)兩期增長率相同,那么a(1+x)2=b,其中a為變化前的量,b為變化后的量,增長率為x.14、5+.【分析】由四邊形是矩形得到內接于,利用勾股定理求出直徑BD的長,由確定點P在上,連接MO并延長,交于一點即為點P,此時PM最長,利用勾股定理求出OM,再加上OP即可得到PM的最大值.【詳解】連接BD,∵四邊形ABCD是矩形,∴∠BAD=∠BCD=90,AD=BC=8,∴BD=10,以BD的中點O為圓心5為半徑作,∵,∴點P在上,連接MO并延長,交于一點即為點P,此時PM最長,且OP=5,過點O作OH⊥AD于點H,∴AH=AD=4,∵AM=2,∴MH=2,∵點O、H分別為BD、AD的中點,∴OH為△ABD的中位線,∴OH=AB=3,∴OM=,∴PM=OP+OM=5+.故答案為:5+.【點睛】此題考查矩形的性質,勾股定理,圓內接四邊形的性質,確定PM的位置是重點,再分段求出OM及OP的長,即可進行計算.15、36m【分析】求滑下的距離,設出下降的高度表示出水平寬度,利用勾股定理即可求解.【詳解】解:當t=4時,s=10t+2t2=72,設此人下降的高度為x米,過斜坡頂點向地面作垂線,在直角三角形中,由勾股定理得:,解得:x=36,故答案為:36m.【點睛】本題考查了解直角三角形的應用理解坡比的意義,使用勾股定理,設未知數(shù),列方程求解.16、1.【分析】求代數(shù)式的值,一元二次方程的解,一元二次方程根與系數(shù)的關系.【詳解】解:∵m、n是一元二次方程x2+2x-7=0的兩個根,∴m2+2m-7=0,即m2+2m=7;m+n=-2.∴m2+1m+n=(m2+2m)+(m+n)=7-2=1.故答案為:117、且【解析】試題解析:∵一元二次方程有兩個不相等的實數(shù)根,∴m?1≠0且△=16?4(m?1)>0,解得m<5且m≠1,∴m的取值范圍為m<5且m≠1.故答案為:m<5且m≠1.點睛:一元二次方程方程有兩個不相等的實數(shù)根時:18、(0,n2+n)【分析】根據(jù)待定系數(shù)法分別求得直線OA1、A2B1、A2B2……的解析式,即可求得P1、P2、P3…的坐標,得出規(guī)律,從而求得點Pn的坐標.【詳解】解:∵點A1的坐標為(1,1),∴直線OA1的解析式為y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),設A1P1的解析式為y=kx+b1,∴,解得,∴直線A1P1的解析式為y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,設B1P2的解析式為y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)設A1B2的解析式為y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴Pn(0,n2+n),故答案為(0,n2+n).【點睛】本題考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,待定系數(shù)法求一次函數(shù)的解析式,根據(jù)一次函數(shù)圖象上點的坐標特征得出規(guī)律是解題的關鍵.三、解答題(共78分)19、(1)m<2;(2)【分析】(1)根據(jù)方程有兩個不相等的實數(shù)根即可得到判別式大于1,由此得到答案;(2)根據(jù)根與系數(shù)的關系式及完全平方公式變形求出ab,再利用三角形的面積公式即可得到答案.【詳解】(1)關于x的一元二次方程x2-2x+m-1=1有兩個不相等的實數(shù)根,∴△>1,即△=4-4(m-1)>1,解得m<2;(2)∵Rt△ABC的斜邊長c=,且兩直角邊a和b恰好是這個方程的兩個根,∴a+b=2,a2+b2=()2=3,∴(a+b)2-2ab=3,∴4-2ab=3,∴ab=,∴Rt△ABC的面積=ab=.【點睛】此題考查一元二次方程的根的判別式,根與系數(shù)的關系式,直角三角形的勾股定理,完全平方式的變形,直角三角形面積的求法.20、(1);(2);(3)1【分析】(1)根據(jù)正比例函數(shù)即可得出答案;(2)根據(jù)點A和B的坐標,利用待定系數(shù)法求解即可;(3)先根據(jù)題(2)求出點C的坐標,從而可知OC的長,再利用三角形的面積公式即可得.【詳解】(1)將代入正比例函數(shù)得,故點的坐標是;(2)設這個一次函數(shù)的解析式為把代入,得解方程組,得故這個一次函數(shù)的解析式為;(3)在中,令,得即點的坐標是,則的面積故的面積為1.【點睛】本題考查了一次函數(shù)的幾何應用、利用待定系數(shù)法求一次函數(shù)的解析式,掌握一次函數(shù)的圖象與性質是解題關鍵.21、證明見解析;【分析】根據(jù)三邊對應成比例的兩個三角形相似可判定△ABC∽△ADE,根據(jù)相似三角形的性質可得∠BAC=∠DAE,即可得∠BAD=∠CAE,再由可得,根據(jù)兩邊對應成比例且夾角相等的兩個三角形相似即可判定△ABD∽△ACE.【詳解】∵在△ABC和△ADE中,,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴,∴△ABD∽△ACE.【點睛】本題考查了相似三角形的判定與性質,熟知相似三角形的判定方法是解決本題的關鍵.22、3﹣.【分析】直接利用特殊角的三角函數(shù)值代入求出答案.【詳解】2cos60°+4sin60°?tan30°﹣cos45°=2×+4××﹣=1+2﹣=3﹣.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.23、(1)見解析;(1)見解析【分析】(1)利用關于原點對稱的點的坐標特征找出A1,B1,C1,然后描點即可;
(1)利用網格特點和旋轉的性質畫出A、C的對應點A1、C1即可.【詳解】解:(1)如圖,△A1B1C1為所作;(1)如圖,△A1B1C1為所作.【點睛】本題考查了作圖-根據(jù)旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.24、.【分析】利用畫樹狀圖法得到總的可能和可能發(fā)生的結果數(shù),即可求出概率.【詳解】解:畫樹狀圖為:共有16種等可能的結果數(shù),其中紅色和藍色的結果數(shù)4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年地下水位測量的鉆探技術
- 2026年物業(yè)管理在房地產市場中的重要性
- 2026年靜力學的基本概念
- 2026內蒙古烏拉特前旗招聘益性崗位人員36人筆試備考題庫及答案解析
- 2025年廣西農村投資集團的筆試及答案
- 2025年企業(yè)招聘會計筆試題庫及答案
- 2026年水資源開發(fā)中的社會經濟影響
- 2025年徐州初中數(shù)學筆試真題及答案
- 2025年富陽區(qū)幼教合同制筆試及答案
- 2025年教師資格筆試刷題庫及答案
- 達人精準運營方案
- 四川省涼山州2025-2026學年上學期期末考試七年級數(shù)學試題(含答案)
- 管網安全生產管理制度
- DB2310-T 099-2022 牡丹江市中藥材火麻仁種植技術規(guī)程
- 婦產??漆t(yī)院危重孕產婦救治中心建設與管理指南
- 2026年建筑物智能化與電氣節(jié)能技術發(fā)展
- 2026年浙江高考英語考試真題及答案
- 垃圾填埋場排水施工方案
- 民航華東地區(qū)管理局機關服務中心2025年公開招聘工作人員考試題庫必考題
- 辦公室頸椎保養(yǎng)課件
- 員工個人成長經歷分享
評論
0/150
提交評論