2023年四川省眉山市名校九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁
2023年四川省眉山市名校九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁
2023年四川省眉山市名校九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁
2023年四川省眉山市名校九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁
2023年四川省眉山市名校九年級數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年四川省眉山市名校九年級數(shù)學第一學期期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,矩形草坪ABCD中,AD=10m,AB=m.現(xiàn)需要修一條由兩個扇環(huán)構成的便道HEFG,扇環(huán)的圓心分別是B,D.若便道的寬為1m,則這條便道的面積大約是()(精確到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m22.某校數(shù)學課外小組,在坐標紙上為某濕地公園的一塊空地設計植樹方案如下:第k棵樹種植在點Pk(xk,yk)處,其中x1=1,y1=1,且k≥2時,,[a]表示非負實數(shù)a的整數(shù)部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵樹種植點的坐標應為()A.(6,2121) B.(2119,5) C.(3,413) D.(414,4)3.下列事件是必然事件的是()A.某人體溫是100℃ B.太陽從西邊下山C.a2+b2=﹣1 D.購買一張彩票,中獎4.如圖,點在以為直徑的半圓上,點為圓心,,則的度數(shù)為()A. B. C. D.5.如圖,AB是O的直徑,AB=4,C為的三等分點(更靠近A點),點P是O上一個動點,取弦AP的中點D,則線段CD的最大值為()A.2 B. C. D.6.用配方法解一元二次方程時,方程變形正確的是()A. B. C. D.7.《九章算術》是一本中國乃至東方世界最偉大的一本綜合性數(shù)學著作,標志著中國古代數(shù)學形成了完整的體系.“圓材埋壁”是《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”朱老師根據(jù)原文題意,畫出了圓材截面圖如圖所示,已知:鋸口深為1寸,鋸道尺(1尺=10寸),則該圓材的直徑長為()A.26寸 B.25寸 C.13寸 D.寸8.方程的兩根分別是,則等于()A.1 B.-1 C.3 D.-39.若函數(shù)y=(m2-3m+2)x|m|-3是反比例函數(shù),則m的值是()A.1 B.-2 C.±2 D.210.已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(-1,1),下列結論:①abc<1;②b2-4ac=1;③a<2;④4a-2b+c>1.其中正確結論的個數(shù)是()A.1 B.2 C.3 D.4二、填空題(每小題3分,共24分)11.如圖,一次函數(shù)=與反比例函數(shù)=(>0)的圖像在第一象限交于點A,點C在以B(7,0)為圓心,2為半徑的⊙B上,已知AC長的最大值為,則該反比例函數(shù)的函數(shù)表達式為__________________________.12.已知二次函數(shù)(m為常數(shù)),若對于一切實數(shù)m和均有y≥k,則k的最大值為____________.13.如圖,在⊙O中,弦AB=8cm,OC⊥AB,垂足為C,OC=3cm,則⊙O的半徑為______cm.14.設分別為一元二次方程的兩個實數(shù)根,則______.15.如圖,是的外接圓,是的中點,連結,其中與交于點.寫出圖中所有與相似的三角形:________.16.計算:=______.17.一個圓錐的母線長為10,高為6,則這個圓錐的側面積是_______.18.某廠前年繳稅萬元,今年繳稅萬元,如果該廠繳稅的年平均增長率為,那么可列方程為______.三、解答題(共66分)19.(10分)如圖:在平面直角坐標系中,點.(1)尺規(guī)作圖:求作過三點的圓;(2)設過三點的圓的圓心為M,利用網格,求點M的坐標;(3)若直線與相交,直接寫出的取值范圍.20.(6分)閱讀下面材料,完成(1)﹣(3)題數(shù)學課上,老師出示了這樣一道題:如圖,四邊形ABCD,AD∥BC,AB=AD,E為對角線AC上一點,∠BEC=∠BAD=2∠DEC,探究AB與BC的數(shù)量關系.某學習小組的同學經過思考,交流了自己的想法:小柏:“通過觀察和度量,發(fā)現(xiàn)∠ACB=∠ABE”;小源:“通過觀察和度量,AE和BE存在一定的數(shù)量關系”;小亮:“通過構造三角形全等,再經過進一步推理,就可以得到線段AB與BC的數(shù)量關系”.……老師:“保留原題條件,如圖2,AC上存在點F,使DF=CF=AE,連接DF并延長交BC于點G,求的值”.(1)求證:∠ACB=∠ABE;(2)探究線段AB與BC的數(shù)量關系,并證明;(3)若DF=CF=AE,求的值(用含k的代數(shù)式表示).21.(6分)已知反比例函數(shù)的圖象經過點A(2,6).(1)求這個反比例函數(shù)的解析式;(2)這個函數(shù)的圖象位于哪些象限?y隨x的增大如何變化?(3)點B(3,4),C(5,2),D(,)是否在這個函數(shù)圖象上?為什么?22.(8分)如圖1,在△ABC中,∠BAC=90°,AB=AC,D為邊AB上一點,連接CD,在線段CD上取一點E,以AE為直角邊作等腰直角△AEF,使∠EAF=90°,連接BF交CD的延長線于點P.(1)探索:CE與BF有何數(shù)量關系和位置關系?并說明理由;(2)如圖2,若AB=2,AE=1,把△AEF繞點A順時針旋轉至△AE'F′,當∠E′AC=60°時,求BF′的長.23.(8分)已知關于x的一元二次方程x2-2x+m-1=1.(1)若此方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;(2)當Rt△ABC的斜邊長c=,且兩直角邊a和b恰好是這個方程的兩個根時,求Rt△ABC的面積.24.(8分)近期江蘇省各地均發(fā)布“霧霾”黃色預警,我市某口罩廠商生產一種新型口罩產品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關系滿足下表.銷售單價x(元/件)…20253040…每月銷售量y(萬件)…60504020…(1)請你從所學過的一次函數(shù)、二次函數(shù)和反比例函數(shù)三個模型中確定哪種函數(shù)能比較恰當?shù)乇硎緔與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關系式為__________;(2)當銷售單價為多少元時,廠商每月獲得的利潤為440萬元?(3)如果廠商每月的制造成本不超過540萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?25.(10分)如圖,在△ABC中,AB=AC,O在AB上,以O為圓心,OB為半徑的圓與AC相切于點F,交BC于點D,交AB于點G,過D作DE⊥AC,垂足為E.(1)DE與⊙O有什么位置關系,請寫出你的結論并證明;(2)若⊙O的半徑長為3,AF=4,求CE的長.26.(10分)如圖,一次函數(shù)的圖象與反比例函數(shù)圖象交于A(-2,1),B(1,n)兩點.(1)求m,n的值;(2)當一次函數(shù)的值大于反比例函數(shù)的值時,請寫出自變量x的取值范圍.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】由四邊形ABCD為矩形得到△ADB為直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°且外環(huán)半徑為10.1,內環(huán)半徑為9.1.這樣可以求出每個扇環(huán)的面積.【詳解】∵四邊形ABCD為矩形,∴△ADB為直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°,且外環(huán)半徑為10.1,內環(huán)半徑為9.1.∴每個扇環(huán)的面積為.∴當π取3.14時整條便道面積為×2=10.4666≈10.1m2.便道面積約為10.1m2.故選:C.【點睛】此題考查內容比較多,有勾股定理、三角函數(shù)、扇形面積,做題的關鍵是把實際問題轉化為數(shù)學問題.2、D【分析】根據(jù)已知分別求出1≤k≤5時,P點坐標為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當6≤k≤11時,P點坐標為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通過觀察得到點的坐標特點,進而求解.【詳解】解:由題可知1≤k≤5時,P點坐標為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當6≤k≤11時,P點坐標為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通過以上數(shù)據(jù)可得,P點的縱坐標5個一組循環(huán),∵2119÷5=413…4,∴當k=2119時,P點的縱坐標是4,橫坐標是413+1=414,∴P(414,4),故選:D.【點睛】本題考查點的坐標和探索規(guī)律;能夠理解題意,通過已知條件探索點的坐標循環(huán)規(guī)律是解題的關鍵.3、B【解析】根據(jù)必然事件的特點:一定會發(fā)生的特點進行判斷即可【詳解】解:A、某人體溫是100℃是不可能事件,本選項不符合題意;B、太陽從西邊下山是必然事件,本選項符合題意;C、a2+b2=﹣1是不可能事件,本選項不符合題意;D、購買一張彩票,中獎是隨機事件,本選項不符合題意.故選:B.【點睛】本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件,不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、B【分析】首先由圓的性質得出OC=OD,進而得出∠CDO=∠DCO,∠COD=70°,然后由圓周角定理得出∠CAD.【詳解】由已知,得OC=OD∴∠CDO=∠DCO=55°∴∠COD=180°-∠CDO-∠DCO=180°-55°-55°=70°∵∠COD為弧CD所對的圓心角,∠CAD為弧CD所對的圓周角∴∠CAD=∠COD=35°故答案為B.【點睛】此題主要考查對圓周角定理的運用,熟練掌握,即可解題.5、D【解析】取OA的中點Q,連接DQ,OD,CQ,根據(jù)條件可求得CQ長,再由垂徑定理得出OD⊥AP,由直角三角形斜邊中線等于斜邊一半求得QD長,根據(jù)當C,Q,D三點共線時,CD長最大求解.【詳解】解:如圖,取AO的中點Q,連接CQ,QD,OD,∵C為的三等分點,∴的度數(shù)為60°,∴∠AOC=60°,∵OA=OC,∴△AOC為等邊三角形,∵Q為OA的中點,∴CQ⊥OA,∠OCQ=30°,∴OQ=,由勾股定理可得,CQ=,∵D為AP的中點,∴OD⊥AP,∵Q為OA的中點,∴DQ=,∴當D點CQ的延長線上時,即點C,Q,D三點共線時,CD長最大,最大值為.故選D【點睛】本題考查利用弧與圓心角的關系及垂徑定理求相關線段的長度,并且考查線段最大值問題,利用圓的綜合性質是解答此題的關鍵.6、B【詳解】,移項得:,兩邊加一次項系數(shù)一半的平方得:,所以,故選B.7、A【分析】取圓心O,連接OP,過O作OH⊥PQ于H,根據(jù)垂徑定理求出PH的長,再根據(jù)勾股定理求出OP的值,即可求出直徑.【詳解】解:取圓心O,連接OP,過O作OH⊥PQ于H,由題意可知MH=1寸,PQ=10寸,

∴PH=5寸,

在Rt△OPH中,OP2=OH2+PH2,設半徑為x,

則x2=(x-1)2+52,

解得:x=13,

故圓的直徑為26寸,

故選:A.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.8、B【分析】根據(jù)一元二次方程根與系數(shù)的關系,即可得到答案.【詳解】解:∵的兩根分別是,∴,故選:B.【點睛】本題考查了一元二次方程根與系數(shù)的關系,解題的關鍵是熟練掌握一元二次方程根與系數(shù)的關系進行解題.9、B【解析】根據(jù)反比例函數(shù)的定義,列出方程求解即可.【詳解】解:由題意得,|m|-3=-1,

解得m=±1,

當m=1時,m1-3m+1=11-3×1+1=2,

當m=-1時,m1-3m+1=(-1)1-3×(-1)+1=4+6+1=11,

∴m的值是-1.

故選:B.【點睛】本題考查了反比例函數(shù)的定義,熟記一般式y(tǒng)=(k≠2)是解題的關鍵,要注意比例系數(shù)不等于2.10、A【分析】根據(jù)拋物線的圖像和表達式分析其系數(shù)的值,通過特殊點的坐標判斷結論是否正確.【詳解】∵函數(shù)圖象開口向上,∴,又∵頂點為(,1),∴,∴,由拋物線與軸的交點坐標可知:,∴c>1,∴abc>1,故①錯誤;∵拋物線頂點在軸上,∴,即,又,∴,故②錯誤;∵頂點為(,1),∴,∵,∴,∵,∴,則,故③錯誤;由拋物線的對稱性可知與時的函數(shù)值相等,∴,∴,故④正確.綜上,只有④正確,正確個數(shù)為1個.故選:A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系,根據(jù)二次函數(shù)圖象以及頂點坐標找出之間的關系是解題的關鍵.二、填空題(每小題3分,共24分)11、或【解析】過A作AD垂直于x軸,設A點坐標為(m,n),則根據(jù)A在y=x上得m=n,由AC長的最大值為,可知AC過圓心B交⊙B于C,進而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根據(jù)勾股定理列方程即可求出m的值,進而可得A點坐標,即可求出該反比例函數(shù)的表達式.【詳解】過A作AD垂直于x軸,設A點坐標為(m,n),∵A在直線y=x上,∴m=n,∵AC長的最大值為,∴AC過圓心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A點在反比例函數(shù)=(>0)的圖像上,∴當m=3時,k=9;當m=4時,k=16,∴該反比例函數(shù)的表達式為:或,故答案為或【點睛】本題考查一次函數(shù)與反比例函數(shù)的性質,理解題意找出AC的最長值是通過圓心的直線是解題關鍵.12、【分析】因為二次函數(shù)系數(shù)大于0,先用含有m的代數(shù)式表示出函數(shù)y的最小值,得出,再求出于m的函數(shù)的最小值即可得出結果.【詳解】解:,,關于m的函數(shù)為,,∴,∴k的最大值為.【點睛】本題考查二次函數(shù)的最值問題,先將函數(shù)化為頂點式,即可得出最值.13、5【分析】先根據(jù)垂徑定理得出AC的長,再由勾股定理即可得出結論.【詳解】連接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA=故答案為:5.【點睛】此題考查勾股定理、垂徑定理及其推論,解題關鍵在于連接OA作為輔助線.14、1【分析】先根據(jù)m是的一個實數(shù)根得出,利用一元二次方程根與系數(shù)的關系得出,然后對原式進行變形后整體代入即可得出答案.【詳解】∵m是一元二次方程的一個實數(shù)根,∴,即.由一元二次方程根與系數(shù)的關系得出,∴.故答案為:1.【點睛】本題主要考查一元二次方程的根及根與系數(shù)的關系,掌握一元二次方程根與系數(shù)的關系是解題的關鍵.15、;.【分析】由同弧所對的圓周角相等可得,可利用含對頂角的8字相似模型得到,由等弧所對的圓周角相等可得,在和含公共角,出現(xiàn)母子型相似模型.【詳解】∵∠ADE=∠BCE,∠AED=∠CEB,∴;∵是的中點,∴,∴∠EAD=∠ABD,∠ADB公共,∴.綜上:;.故答案為:;.【點睛】本題考查的知識點是相似三角形的判定和性質,圓周角定理,同弧或等弧所對的圓周角相等的應用是解題的關鍵.16、4【分析】直接利用零指數(shù)冪的性質和絕對值的性質分別化簡得出答案.【詳解】解:原式=1+3=4.故答案為:4.【點睛】此題主要考查了零指數(shù)冪的性質和絕對值的性質,正確化簡各數(shù)是解題關鍵.17、80π【分析】首先根據(jù)勾股定理求得圓錐的底面半徑,從而得到底面周長,然后利用扇形的面積公式即可求解.【詳解】解:圓錐的底面半徑是:=8,圓錐的底面周長是:2×8π=16π,

則×16π×10=80π.故答案為:80π.【點睛】本題考查了圓錐的計算,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.18、【分析】由題意設該廠繳稅的年平均增長率為x,根據(jù)該廠前年及今年的納稅額,即可得出關于x的一元二次方程.【詳解】解:如果該廠繳稅的年平均增長率為,那么可以用表示今年的繳稅數(shù),今年的繳稅數(shù)為,然后根據(jù)題意列出方程.故答案為:.【點睛】本題考查一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.三、解答題(共66分)19、(1)見解析;(2)M(1,3);(3)【分析】(1)作OA和OB的垂直平分線,交點即為圓心,據(jù)此作圓即可;(2)AB的中點即為圓心M,由此可解;(3)求出半徑,即可知直線與相切時a的值,由此可得相交時的取值范圍.【詳解】解:(1)如圖即為所要求作的過三點的圓;作OA和OB的垂直平分線,交點即為圓心,作圓即可.(2)由圖可知,∠AOB=,所以AB是所求作圓的直徑,因為AB中點的坐標為(1,3),即所求圓心M的坐標是(1,3).(3)由圓心M和圓上任意點可求出半徑r=AM=BM=,∴當a=1-或1+時,直線與相切,∴當時,直線與相交.【點睛】本題考查了網格作圖,圓的有關性質,直線與圓的位置關系,掌握切線時的有關計算是解題的關鍵.20、(1)見解析;(2)CB=2AB;(3)【分析】(1)利用平行線的性質以及角的等量代換求證即可;(2)在BE邊上取點H,使BH=AE,可證明△ABH≌△DAE,△ABE∽△ACB,利用相似三角形的性質從而得出結論;(3)連接BD交AC于點Q,過點A作AK⊥BD于點K,得出,通過證明△ADK∽△DBC得出∠BDC=∠AKD=90°,再證DF=FQ,設AD=a,因此有DF=FC=QF=ka,再利用相似三角形的性質得出AC=3ka,,,從而得出答案.【詳解】解:(1)∵∠BAD=∠BEC∠BAD=∠BAE+∠EAD∠BEC=∠ABE+BAE∴∠EAD=∠ABE∵AD∥BC∴∠EAD=∠ACB∴∠ACB=∠ABE(2)在BE邊上取點H,使BH=AE∵AB=AD∴△ABH≌△DAE∴∠AHB=∠AED∵∠AHB+∠AHE=180°∠AED+∠DEC=180°∴∠AHE=∠DEC∵∠BEC=2∠DEC∠BEC=∠HAE+∠AHE∴∠AHE=∠HAE∴AE=EH∴BE=2AE∵∠ABE=∠ACB∠BAE=∠CAB∴△ABE∽△ACB∴∴CB=2AB;(3)連接BD交AC于點Q,過點A作AK⊥BD于點K∵AD=AB∴∠AKD=90°∵∴∵AD∥BC∴∠ADK=∠DBC∴△ADK∽△DBC∴∠BDC=∠AKD=90°∵DF=FC∴∠FDC=∠DFC∵∠BDC=90°∴∠FDC+∠QDF=90°∠DQF+∠DCF=90°∴DF=FQ設AD=a∴DF=FC=QF=ka∵AD∥BC∴∠DAQ=∠QCB∠ADQ=∠QBC∴△AQD∽△CQB∴∴AQ=ka=QF=CF∴AC=3ka∵△ABE∽△ACB∴∴同理△AFD∽△CFG∴.【點睛】本題是一道關于相似的綜合題目,難度較大,根據(jù)題目作出合適的輔助線是解此題的關鍵,解決此題還需要較強的數(shù)形結合的能力以及較強的計算能力.21、(1);(2)這個函數(shù)的圖象位于第一、三象限,在每一個象限內,y隨x的增大而減?。?3)點B,D在函數(shù)的圖象上,點C不在這個函數(shù)圖象上.【分析】(1)利用待定系數(shù)法求函數(shù)解析式;(2)根據(jù)反比例函數(shù)的性質求解;(3)根據(jù)反比例函數(shù)圖象上點的坐標特征進行判斷.【詳解】(1)設這個反比例函數(shù)的解析式為,因為在其圖象上,所以點的坐標滿足,即,,解得,所以,這個反比例函數(shù)解析式為;(2)這個函數(shù)的圖象位于第一、三象限,在每一個象限內,隨的增大而減小;(3)因為點,滿足,所以點,在函數(shù)的圖象上,點的坐標不滿足,所以點不在這個函數(shù)圖象上.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)的解析式:先設出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);再把已知條件(自變量與函數(shù)的對應值)帶入解析式,得到待定系數(shù)的方程;然后解方程,求出待定系數(shù);最后寫出解析式.也考查了反比例函數(shù)的性質.22、(1)CE=BF,CE⊥BF,理由見解析;(2)【分析】(1)由“SAS”可證△AEC≌△AFB,可得CE=BF,∠ABF=∠ACE,進而可得CE⊥BF;(2)過點E'作E'H⊥AC,連接E'C,由直角三角形的性質和勾股定理可求E'C的長,由“SAS”可證△F'AB≌△E'AC,可得BF'=CE'=.【詳解】(1)CE=BF,CE⊥BF,理由如下:∵∠BAC=∠EAF=90°,∴∠EAC=∠FAB,又∵AE=AF,AB=AC,∴△AEC≌△AFB(SAS)∴CE=BF,∠ABF=∠ACE,∵∠ADC=∠BDP,∴∠BPD=∠CAD=90°,∴CE⊥BF;(2)過點E'作E'H⊥AC,連接E'C,∵把△AEF繞點A順時針旋轉至△AE'F′,∴AF=AE=AE'=AF'=1,∠BAF'=∠E'AC=60°,∵∠E'AC=60°,∠AHE'=90°,∴∠AE'H=30°,∴AH=AE'=,E'H=AH=,∴HC=AC﹣AH=,∴E'C==,∵AF'=AE',∠F'AB=∠E'AC=60°,AB=AC,∴△F'AB≌△E'AC(SAS)∴BF'=CE'=.【點睛】本題主要考查勾股定理和三角形全等的判定和性質定理,旋轉的性質,添加輔助線,構造直角三角形,是解題的關鍵.23、(1)m<2;(2)【分析】(1)根據(jù)方程有兩個不相等的實數(shù)根即可得到判別式大于1,由此得到答案;(2)根據(jù)根與系數(shù)的關系式及完全平方公式變形求出ab,再利用三角形的面積公式即可得到答案.【詳解】(1)關于x的一元二次方程x2-2x+m-1=1有兩個不相等的實數(shù)根,∴△>1,即△=4-4(m-1)>1,解得m<2;(2)∵Rt△ABC的斜邊長c=,且兩直角邊a和b恰好是這個方程的兩個根,∴a+b=2,a2+b2=()2=3,∴(a+b)2-2ab=3,∴4-2ab=3,∴ab=,∴Rt△ABC的面積=ab=.【點睛】此題考查一元二次方程的根的判別式,根與系數(shù)的關系式,直角三角形的勾股定理,完全平方式的變形,直角三角形面積的求法.24、(1)y=﹣2x+100;(2)當銷售單價為28元或1元時,廠商每月獲得的利潤為41萬元;(3)當銷售單價為35元時,廠商每月獲得的利潤最大,最大利潤為510萬元.【分析】(1)直接利用待定系數(shù)法求出一次函數(shù)解析式;(2)根據(jù)利潤=銷售量×(銷售單價﹣成本),代入代數(shù)式求出函數(shù)關系式,令利潤z=41,求出x的值;(3)根據(jù)廠商每月的制造成本不超過51萬元,以及成本價18元,得出銷售單價的取值范圍,進而得出最大利潤.【詳解】解:(1)由表格中數(shù)據(jù)可得:y與x之間的函數(shù)關系式為:y=kx+b,把(20,60),(25,50)代入得:解得:故y與x之間的函數(shù)關系式為:y=﹣2x+100;(2)設總利潤為z,由題意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800;當z=41時,﹣2x2+136x﹣1800=41,解得:x1=28,x2=1.答:當銷售單價為28元或1元時,廠商每月獲得的利潤為41

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論