貴州省遵義市航天高級(jí)中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
貴州省遵義市航天高級(jí)中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
貴州省遵義市航天高級(jí)中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
貴州省遵義市航天高級(jí)中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
貴州省遵義市航天高級(jí)中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

貴州省遵義市航天高級(jí)中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對(duì)稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.2.已知數(shù)列是公比為的正項(xiàng)等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.3.集合,則集合的真子集的個(gè)數(shù)是A.1個(gè) B.3個(gè) C.4個(gè) D.7個(gè)4.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.5.如圖,在中,點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn),點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn),則()A. B. C. D.6.下列命題為真命題的個(gè)數(shù)是()(其中,為無(wú)理數(shù))①;②;③.A.0 B.1 C.2 D.37.德國(guó)數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個(gè)關(guān)于π的級(jí)數(shù)展開(kāi)式,該公式于明朝初年傳入我國(guó).在我國(guó)科技水平業(yè)已落后的情況下,我國(guó)數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國(guó)的數(shù)學(xué)研究水平,從乾隆初年(1736年)開(kāi)始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開(kāi)三角函數(shù)和反三角函數(shù)的6個(gè)新級(jí)數(shù)公式,著有《割圓密率捷法》一書(shū),為我國(guó)用級(jí)數(shù)計(jì)算π開(kāi)創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級(jí)數(shù)展開(kāi)式”計(jì)算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.8.已知的展開(kāi)式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.9.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.已知函數(shù)若函數(shù)在上零點(diǎn)最多,則實(shí)數(shù)的取值范圍是()A. B. C. D.11.下圖是民航部門(mén)統(tǒng)計(jì)的某年春運(yùn)期間,六個(gè)城市售出的往返機(jī)票的平均價(jià)格(單位元),以及相比于上一年同期價(jià)格變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價(jià)格最高B.天津的往返機(jī)票平均價(jià)格變化最大C.上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng)D.相比于上一年同期,其中四個(gè)城市的往返機(jī)票平均價(jià)格在增加12.已知實(shí)數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則容器體積的最小值為_(kāi)________.14.已知,則__________.15.在平面直角坐標(biāo)系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為_(kāi)_______.16.在棱長(zhǎng)為的正方體中,是正方形的中心,為的中點(diǎn),過(guò)的平面與直線垂直,則平面截正方體所得的截面面積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)若對(duì)任意的,當(dāng)時(shí),都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)18.(12分)已知函數(shù)f(x)=x(1)討論fx(2)當(dāng)x≥-1時(shí),fx+a19.(12分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.20.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.21.(12分)2019年是五四運(yùn)動(dòng)100周年.五四運(yùn)動(dòng)以來(lái)的100年,是中國(guó)青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國(guó)、青春之民族的100年.為繼承和發(fā)揚(yáng)五四精神在青年節(jié)到來(lái)之際,學(xué)校組織“五四運(yùn)動(dòng)100周年”知識(shí)競(jìng)賽,競(jìng)賽的一個(gè)環(huán)節(jié)由10道題目組成,其中6道A類(lèi)題、4道B類(lèi)題,參賽者需從10道題目中隨機(jī)抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類(lèi)題的概率;(2)若甲同學(xué)答對(duì)每道A類(lèi)題的概率都是,答對(duì)每道B類(lèi)題的概率都是,且各題答對(duì)與否相互獨(dú)立.現(xiàn)已知甲同學(xué)恰好抽中2道A類(lèi)題和1道B類(lèi)題,用X表示甲同學(xué)答對(duì)題目的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.22.(10分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時(shí),若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實(shí)數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對(duì)稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對(duì)稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對(duì)稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.2、B【解析】

利用等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)的單調(diào)性求得再根據(jù)此范圍求的最小值.【詳解】數(shù)列是公比為的正項(xiàng)等比數(shù)列,、滿足,由等比數(shù)列的通項(xiàng)公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當(dāng)且時(shí),的最小值為.故選:B.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)性質(zhì)等基礎(chǔ)知識(shí),考查數(shù)學(xué)運(yùn)算求解能力和分類(lèi)討論思想,是中等題.3、B【解析】

由題意,結(jié)合集合,求得集合,得到集合中元素的個(gè)數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個(gè)數(shù)為個(gè),故選B.【點(diǎn)睛】本題主要考查了集合的運(yùn)算和集合中真子集的個(gè)數(shù)個(gè)數(shù)的求解,其中作出集合的運(yùn)算,得到集合,再由真子集個(gè)數(shù)的公式作出計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.4、D【解析】

設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.5、B【解析】

,將,代入化簡(jiǎn)即可.【詳解】.故選:B.【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算、數(shù)乘運(yùn)算,考查學(xué)生的運(yùn)算能力,是一道中檔題.6、C【解析】

對(duì)于①中,根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和不等式的性質(zhì),可判定值正確的;對(duì)于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進(jìn)而得到,即可判定是錯(cuò)誤的;對(duì)于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進(jìn)而得到,即可判定是正確的.【詳解】由題意,對(duì)于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對(duì)于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因?yàn)?,則又由,所以,即,所以②不正確;對(duì)于③中,設(shè)函數(shù),則,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點(diǎn)睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運(yùn)算能力,屬于中檔試題.7、B【解析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計(jì)算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時(shí)滿足判定條件,輸出結(jié)果,故選:B.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,得到程序框圖的計(jì)算功能是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.8、D【解析】因?yàn)榈恼归_(kāi)式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.9、D【解析】

根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,

當(dāng),若為增函數(shù),則①,

當(dāng),若為增函數(shù),必有在上恒成立,

變形可得:,

又由,可得在上單調(diào)遞減,則,

若在上恒成立,則有②,

若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③

聯(lián)立①②③可得:.

故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).10、D【解析】

將函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為函數(shù)與直線的交點(diǎn)的個(gè)數(shù)問(wèn)題,畫(huà)出函數(shù)的圖象,易知直線過(guò)定點(diǎn),故與在時(shí)的圖象必有兩個(gè)交點(diǎn),故只需與在時(shí)的圖象有兩個(gè)交點(diǎn),再與切線問(wèn)題相結(jié)合,即可求解.【詳解】由圖知與有個(gè)公共點(diǎn)即可,即,當(dāng)設(shè)切點(diǎn),則,.故選:D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)個(gè)數(shù)的問(wèn)題,曲線的切線問(wèn)題,注意運(yùn)用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.11、D【解析】

根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對(duì)選項(xiàng)逐一分析,由此得出敘述不正確的選項(xiàng).【詳解】對(duì)于A選項(xiàng),根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價(jià)格最高,所以A選項(xiàng)敘述正確.對(duì)于B選項(xiàng),根據(jù)折線圖可知天津的往返機(jī)票平均價(jià)格變化最大,所以B選項(xiàng)敘述正確.對(duì)于C選項(xiàng),根據(jù)條形圖可知上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng),所以C選項(xiàng)敘述正確.對(duì)于D選項(xiàng),根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個(gè)城市的往返機(jī)票平均價(jià)格在增加,故D選項(xiàng)敘述錯(cuò)誤.故選:D【點(diǎn)睛】本小題主要考查根據(jù)條形圖和折線圖進(jìn)行數(shù)據(jù)分析,屬于基礎(chǔ)題.12、B【解析】

畫(huà)出可行域,根據(jù)可行域上的點(diǎn)到原點(diǎn)距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點(diǎn)所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,顯然原點(diǎn)到所在的直線的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最小值,此時(shí),點(diǎn)到原點(diǎn)的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最大值,此時(shí).所以的取值范圍是.故選:B【點(diǎn)睛】本小題考查線性規(guī)劃,兩點(diǎn)間距離公式等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則圓柱形容器的底面直徑及高的最小值均等于長(zhǎng)方體的體對(duì)角線的長(zhǎng),長(zhǎng)方體的體對(duì)角線的長(zhǎng)為,所以容器體積的最小值為.14、【解析】

首先利用,將其兩邊同時(shí)平方,利用同角三角函數(shù)關(guān)系式以及倍角公式得到,從而求得,利用誘導(dǎo)公式求得,得到結(jié)果.【詳解】因?yàn)?,所以,即,所以,故答案?【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)化簡(jiǎn)求值問(wèn)題,涉及到的知識(shí)點(diǎn)有同角三角函數(shù)關(guān)系式,倍角公式,誘導(dǎo)公式,屬于簡(jiǎn)單題目.15、【解析】

利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點(diǎn)睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運(yùn)算能力,屬于基礎(chǔ)題.16、【解析】

確定平面即為平面,四邊形是菱形,計(jì)算面積得到答案.【詳解】如圖,在正方體中,記的中點(diǎn)為,連接,則平面即為平面.證明如下:由正方體的性質(zhì)可知,,則,四點(diǎn)共面,記的中點(diǎn)為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因?yàn)檎襟w的棱長(zhǎng)為,易知四邊形是菱形,其對(duì)角線,,所以其面積.故答案為:【點(diǎn)睛】本題考查了正方體的截面面積,意在考查學(xué)生的空間想象能力和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)2【解析】

(1)先求得切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)求得切線的斜率,由此求得切線方程.(2)對(duì)分成,兩種情況進(jìn)行分類(lèi)討論.當(dāng)時(shí),將不等式轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最小值(設(shè)為)的取值范圍,由的得在上恒成立,結(jié)合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【詳解】(1)已知函數(shù),則處即為,又,,可知函數(shù)過(guò)點(diǎn)的切線為,即.(2)注意到,不等式中,當(dāng)時(shí),顯然成立;當(dāng)時(shí),不等式可化為令,則,,所以存在,使.由于在上遞增,在上遞減,所以是的唯一零點(diǎn).且在區(qū)間上,遞減,在區(qū)間上,遞增,即的最小值為,令,則,將的最小值設(shè)為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數(shù)為2.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18、(1)見(jiàn)解析;(2)-∞,1【解析】

(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對(duì)a分類(lèi)討論,即可得出單調(diào)性.

(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當(dāng)x=-1時(shí),0≤-1e+1恒成立.當(dāng)x>-1時(shí),a≤xe【詳解】解法一:(1)f①當(dāng)a≤0時(shí),x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)單調(diào)遞增.②當(dāng)a>0時(shí),f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,-1),(lna,+∞)上單調(diào)遞增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,lna),(-1,+∞)上單調(diào)遞增,在綜上:當(dāng)a≤0時(shí),f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)上單調(diào)遞增;當(dāng)0<a<1e時(shí),f(x)在(-∞,lna),自a=1e時(shí),f(x)在當(dāng)a>1e時(shí),f(x)在(-∞,-1),(ln(2)因?yàn)閤ex-ax-a+1≥0當(dāng)x=-1時(shí),0≤-1當(dāng)x>-1時(shí),a≤x令g(x)=xex設(shè)h(x)=e因?yàn)閔'(x)=e即hx=e又因?yàn)閔0=0,所以g(x)=xex則g(x)min=g(0)=1綜上,a的取值范圍為-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'當(dāng)a≤0時(shí),g'(x)≥0,則g(x)在所以g(x)≥g(-1)=-1當(dāng)0<a≤1時(shí),令h(x)=e因?yàn)閔'(x)=2ex+x又因?yàn)閔-1=-a<0,所以h(x)=ex+xexx(-1x(g-0+g(x)↘極小值↗g==-e當(dāng)a>1時(shí),g(0)=-a+1<0,不滿足題意.綜上,a的取值范圍為-∞,1.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、分類(lèi)討論方法、方程與不等式的解法,考查了推理能力與計(jì)算能力,屬于難題.19、(1),(2)【解析】

(1)根據(jù)與可求得,再根據(jù)等比數(shù)列的基本量求解即可.(2)由(1)可得,再利用錯(cuò)位相減求和即可.【詳解】解:(1)依題意,,設(shè)數(shù)列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解以及錯(cuò)位相減求和等.屬于中檔題.20、(1)(2)【解析】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論