2024屆福建省三明市永安三中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第1頁
2024屆福建省三明市永安三中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第2頁
2024屆福建省三明市永安三中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第3頁
2024屆福建省三明市永安三中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第4頁
2024屆福建省三明市永安三中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆福建省三明市永安三中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中,最小值為2的函數(shù)是()A. B.C. D.2.某校有高一學(xué)生人,高二學(xué)生人,高三學(xué)生人,現(xiàn)教育局督導(dǎo)組欲用分層抽樣的方法抽取名學(xué)生進(jìn)行問卷調(diào)查,則下列判斷正確的是()A.高一學(xué)生被抽到的可能性最大 B.高二學(xué)生被抽到的可能性最大C.高三學(xué)生被抽到的可能性最大 D.每位學(xué)生被抽到的可能性相等3.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是()A.3 B.11 C.38 D.1234.已知.為等比數(shù)列的前項和,若,,則()A.31 B.32 C.63 D.645.若三棱錐中,,,,且,,,則該三棱錐外接球的表面積為()A. B. C. D.6.已知數(shù)列是公比為2的等比數(shù)列,滿足,設(shè)等差數(shù)列的前項和為,若,則()A.34B.39C.51D.687.已知向量,.且,則()A.2 B. C. D.8.在正四棱柱,,則異面直線與所成角的余弦值為A. B. C. D.9.在等比數(shù)列中,若,則()A.3 B. C.9 D.1310.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知兩個數(shù)k+9和6-k的等比中項是2k,則k=________.12.若,則_________.13.已知三棱錐外接球的表面積為,面,則該三棱錐體積的最大值為____。14.若,則____________.15.在我國古代數(shù)學(xué)著作《孫子算經(jīng)》中,卷下第二十六題是:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?滿足題意的答案可以用數(shù)列表示,該數(shù)列的通項公式可以表示為________16.已知兩個正實(shí)數(shù)x,y滿足=2,且恒有x+2y﹣m>0,則實(shí)數(shù)m的取值范圍是______________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某企業(yè)2015年的純利潤為500萬元,因?yàn)槠髽I(yè)的設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降.若不進(jìn)行技術(shù)改造,預(yù)測從2015年開始,此后每年比上一年純利潤減少20萬元.如果進(jìn)行技術(shù)改造,2016年初該企業(yè)需一次性投入資金600萬元,在未扣除技術(shù)改造資金的情況下,預(yù)計2016年的利潤為750萬元,此后每年的利潤比前一年利潤的一半還多250萬元.(1)設(shè)從2016年起的第n年(以2016年為第一年),該企業(yè)不進(jìn)行技術(shù)改造的年純利潤為萬元;進(jìn)行技術(shù)改造后,在未扣除技術(shù)改造資金的情況下的年利潤為萬元,求和;(2)設(shè)從2016年起的第n年(以2016年為第一年),該企業(yè)不進(jìn)行技術(shù)改造的累計純利潤為萬元,進(jìn)行技術(shù)改造后的累計純利潤為萬元,求和;(3)依上述預(yù)測,從2016年起該企業(yè)至少經(jīng)過多少年,進(jìn)行技術(shù)改造的累計純利潤將超過不進(jìn)行技術(shù)改造的累計純利潤?18.如圖,在三棱柱中,是邊長為4的正三角形,側(cè)面是矩形,分別是線段的中點(diǎn).(1)求證:平面;(2)若平面平面,,求三棱錐的體積.19.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)求函數(shù)在上的最大值和最小值.20.在中,內(nèi)角,,所對的邊分別為,,.若.(1)求角的度數(shù);(2)當(dāng)時,求的取值范圍.21.已知集合,,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

利用基本不等式及函數(shù)的單調(diào)性即可判斷.【題目詳解】解:對于.時,,故錯誤.對于.,可得,,當(dāng)且僅當(dāng),即時取等號,故最小值不可能為1,故錯誤.對于,可得,,當(dāng)且僅當(dāng)時取等號,最小值為1.對于.,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,,故不對;故選:.【題目點(diǎn)撥】本題考查基本不等式,難點(diǎn)在于應(yīng)用基本不等式時對“一正二定三等”條件的理解與靈活應(yīng)用,屬于中檔題.2、D【解題分析】

根據(jù)分層抽樣是等可能的選出正確答案.【題目詳解】由于分層抽樣是等可能的,所以每位學(xué)生被抽到的可能性相等,故選D.【題目點(diǎn)撥】本小題主要考查隨機(jī)抽樣的公平性,考查分層抽樣的知識,屬于基礎(chǔ)題.3、B【解題分析】試題分析:通過框圖的要求;將第一次循環(huán)的結(jié)果寫出,通過判斷框;再將第二次循環(huán)的結(jié)果寫出,通過判斷框;輸出結(jié)果.解;經(jīng)過第一次循環(huán)得到a=12+2=3經(jīng)過第一次循環(huán)得到a=32+2=11不滿足判斷框的條件,執(zhí)行輸出11故選B點(diǎn)評:本題考查程序框圖中的循環(huán)結(jié)構(gòu)常采用將前幾次循環(huán)的結(jié)果寫出找規(guī)律.4、C【解題分析】

首先根據(jù)題意求出和的值,再計算即可.【題目詳解】有題知:,解得,.故選:C【題目點(diǎn)撥】本題主要考查等比數(shù)列的性質(zhì)以及前項和的求法,屬于簡單題.5、B【解題分析】

將棱錐補(bǔ)成長方體,根據(jù)長方體的外接球的求解方法法得到結(jié)果.【題目詳解】根據(jù)題意得到棱錐的三條側(cè)棱兩兩垂直,可以以三條側(cè)棱為長方體的楞,該三棱錐補(bǔ)成長方體,兩者的外接球是同一個,外接球的球心是長方體的體對角線的中點(diǎn)處。設(shè)球的半徑為R,則表面積為故答案為:B.【題目點(diǎn)撥】本題考查了球與幾何體的問題,是高考中的重點(diǎn)問題,要有一定的空間想象能力,這樣才能找準(zhǔn)關(guān)系,得到結(jié)果,一般外接球需要求球心和半徑,首先應(yīng)確定球心的位置,借助于外接球的性質(zhì),球心到各頂點(diǎn)距離相等,這樣可先確定幾何體中部分點(diǎn)組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點(diǎn)到多邊形的頂點(diǎn)的距離相等,然后同樣的方法找到另一個多邊形的各頂點(diǎn)距離相等的直線(這兩個多邊形需有公共點(diǎn)),這樣兩條直線的交點(diǎn),就是其外接球的球心,再根據(jù)半徑,頂點(diǎn)到底面中心的距離,球心到底面中心的距離,構(gòu)成勾股定理求解,有時也可利用補(bǔ)體法得到半徑,例:三條側(cè)棱兩兩垂直的三棱錐,可以補(bǔ)成長方體,它們是同一個外接球.6、D【解題分析】由數(shù)列是公比為的等比數(shù)列,且滿足,得,所以,所以,設(shè)數(shù)列的公差為,則,故選D.7、B【解題分析】

通過得到,再利用和差公式得到答案.【題目詳解】向量,.且故答案為B【題目點(diǎn)撥】本題考查了向量平行,正切值的計算,意在考查學(xué)生的計算能力.8、A【解題分析】

作出兩異面直線所成的角,然后由余弦定理求解.【題目詳解】在正四棱柱中,則異面直線與所成角為或其補(bǔ)角,在中,,,.故選A.【題目點(diǎn)撥】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角,然后通過解三角形求之.9、A【解題分析】

根據(jù)等比數(shù)列性質(zhì)即可得解.【題目詳解】在等比數(shù)列中,,,所以,所以,.故選:A【題目點(diǎn)撥】此題考查等比數(shù)列的性質(zhì),根據(jù)性質(zhì)求數(shù)列中的項的關(guān)系,關(guān)鍵在于熟練掌握相關(guān)性質(zhì),準(zhǔn)確計算.10、A【解題分析】

根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡即得所求.【題目詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,,即,解得,因?yàn)?,所以?故選:A【題目點(diǎn)撥】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.12、【解題分析】

利用誘導(dǎo)公式求解即可【題目詳解】,故答案為:【題目點(diǎn)撥】本題考查誘導(dǎo)公式,是基礎(chǔ)題13、【解題分析】

根據(jù)球的表面積計算出球的半徑.利用勾股定理計算出三角形外接圓的半徑,根據(jù)正弦定理求得的長,再根據(jù)圓內(nèi)三角形面積的最大值求得三角形面積的最大值,由此求得三棱錐體積的最大值.【題目詳解】畫出圖像如下圖所示,其中是外接球的球心,是底面三角形的外心,.設(shè)球的半徑為,三角形外接圓的半徑為,則,故在中,.在三角形中,由正弦定理得.故三角形為等邊三角形,其高為.由于為定值,而三角形的高等于時,三角形的面積取得最大值,由于為定值,故三棱錐的體積最大值為.【題目點(diǎn)撥】本小題主要考查外接球有關(guān)計算,考查三棱錐體積的最大值的計算,屬于中檔題.14、【解題分析】故答案為.15、【解題分析】

根據(jù)題意結(jié)合整除中的余數(shù)問題、最小公倍數(shù)問題,進(jìn)行分析求解即可.【題目詳解】由題意得:一個數(shù)用3除余2,用7除也余2,所以用3與7的最小公倍數(shù)21除也余2,而用21除余2的數(shù)我們首先就會想到23;23恰好被5除余3,即最小的一個數(shù)為23,同時這個數(shù)相差又是3,5,7的最小公倍數(shù),即,即數(shù)列的通項公式可以表示為,故答案為:.【題目點(diǎn)撥】本題以數(shù)學(xué)文化為背景,利用數(shù)列中的整除、最小公倍數(shù)進(jìn)行求解,考查邏輯推理能力和運(yùn)算求解能力.16、(-∞,1)【解題分析】

由x+2y(x+2y)()(1),運(yùn)用基本不等式可得x+2y的最小值,由題意可得m<x+2y的最小值.【題目詳解】兩個正實(shí)數(shù)x,y滿足2,則x+2y(x+2y)()(1)(1+2)=1,當(dāng)且僅當(dāng)x=2y=2時,上式取得等號,x+2y﹣m>0,即為m<x+2y,由題意可得m<1.故答案為:(﹣∞,1).【題目點(diǎn)撥】本題考查基本不等式的運(yùn)用:“乘1法”求最值,考查不等式恒成立問題解法,注意運(yùn)用轉(zhuǎn)化思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2),(3)至少經(jīng)過4年,進(jìn)行技術(shù)改造的累計純利潤將超過不進(jìn)行技術(shù)改造的累計純利潤.【解題分析】

(1)利用等差數(shù)列、等比數(shù)列的通項公式求和(2)是數(shù)列的前項和,是數(shù)列的前項和減去600,利用等差數(shù)列和等比數(shù)列的前項和公式求出即可(3)作差,利用函數(shù)的單調(diào)性,即可得出結(jié)論【題目詳解】(1)由題意得是等差數(shù)列,所以由題意得所以所以是首項為250,公比為的等比數(shù)列所以所以(2)是數(shù)列的前項和所以是數(shù)列的前項和減去600,所以(3)易得此函數(shù)當(dāng)時單調(diào)遞增且時時所以至少經(jīng)過4年,進(jìn)行技術(shù)改造的累計純利潤將超過不進(jìn)行技術(shù)改造的累計純利潤.【題目點(diǎn)撥】本題考查的是數(shù)列的綜合知識,包含通項公式的求法、前n項和的求法及數(shù)列的單調(diào)性.18、(1)見解析(2)【解題分析】

(1)取中點(diǎn)為,連接,由中位線定理證得,即證得平行四邊形,于是有,這樣就證得線面平行;(2)由等體積法變換后可計算.【題目詳解】證明:(1)取中點(diǎn)為,連接,是平行四邊形,平面,平面,∴平面解:(2)是線段中點(diǎn),則【題目點(diǎn)撥】本題考查線面平行的判定,考查棱錐的體積.線面平行的證明關(guān)鍵是找到線線平行,而棱錐的體積常常用等積變換,轉(zhuǎn)化頂點(diǎn)與底.19、(1);(2)5;-2【解題分析】

(1)根據(jù)二倍角公式和輔助角公式化簡即可(2)由求出的范圍,再根據(jù)函數(shù)圖像求最值即可【題目詳解】(1),,令,即單減區(qū)間為;(2)由,當(dāng)時,的最小值為:-2;當(dāng)時,的最大值為:5【題目點(diǎn)撥】本題考查三角函數(shù)解析式的化簡,函數(shù)基本性質(zhì)的求解(周期、單調(diào)性、在給定區(qū)間的最值),屬于中檔題20、(1);(2).【解題分析】

(1)根據(jù)余弦定理即可解決.(2)根據(jù)向量的三角形法則即可解決.【題目詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論