版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北京十二中2024屆數(shù)學高一下期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在區(qū)間上任取兩個實數(shù),則滿足的概率為()A. B. C. D.2.在某項體育比賽中,七位裁判為一選手打出的分數(shù)如下:90,89,90,95,93,94,93,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為()A.92,2 B.92,2.8 C.93,2 D.93,2.83.三棱錐中,底面是邊長為2的正三角形,⊥底面,且,則此三棱錐外接球的半徑為()A. B. C. D.4.在中,角,,所對的邊為,,,且為銳角,若,,,則()A. B. C. D.5.已知2弧度的圓心角所對的弧長為2,則這個圓心角所對的弦長是()A. B. C. D.6.直線的傾斜角不可能為()A. B. C. D.7.記為等差數(shù)列的前n項和.若,,則等差數(shù)列的公差為()A.1 B.2 C.4 D.88.產(chǎn)能利用率是指實際產(chǎn)出與生產(chǎn)能力的比率,工業(yè)產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營狀況的重要指標.下圖為國家統(tǒng)計局發(fā)布的2015年至2018年第2季度我國工業(yè)產(chǎn)能利用率的折線圖.在統(tǒng)計學中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.據(jù)上述信息,下列結論中正確的是()A.2015年第三季度環(huán)比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度環(huán)比有所提高9.已知tan(α+π5A.1B.-57C.10.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.已知,a=2,c=,則C=A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,緝私艇在處發(fā)現(xiàn)走私船在方位角且距離為12海里的處正以每小時10海里的速度沿方位角的方向逃竄,緝私艇立即以每小時14海里的速度追擊,則緝私艇追上走私船所需要的時間是__________小時.12.若點為圓的弦的中點,則弦所在的直線的方程為___________.13.已知等腰三角形底角的余弦值等于,則這個三角形頂角的正弦值為________.14.在等比數(shù)列中,,,則________.15.在△ABC中,若∠A=120°,AB=5,BC=7,則△ABC的面積S=_____.16.某校女子籃球隊7名運動員身高(單位:cm)分布的莖葉圖如圖,已知記錄的平均身高為175cm,但記錄中有一名運動員身高的末位數(shù)字不清晰,如果把其末位數(shù)字記為x,那么x的值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知單調(diào)遞減數(shù)列的前項和為,,且,則_____.18.已知,,當為何值時:(1)與垂直;(2)與平行.19.設數(shù)列的前項和為,對于,,其中是常數(shù).(1)試討論:數(shù)列在什么條件下為等比數(shù)列,請說明理由;(2)設,且對任意的,有意義,數(shù)列的前項和為.若,求的最大值.20.已知的內(nèi)角A,B,C所對的邊分別為a,b,c,且.(1)若,求的值;(2)若,求b,c的值.21.在中,內(nèi)角,,的對邊分別為,,,已知,.(Ⅰ)求的值;(Ⅱ)若,求邊的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】試題分析:因為,在區(qū)間上任取兩個實數(shù),所以區(qū)域的面積為4,其中滿足的平面區(qū)域面積為,故滿足的概率為,選B.考點:本題主要考查幾何概型概率計算.點評:簡單題,幾何概型概率的計算,關鍵是認清兩個“幾何度量”.2、B【解題分析】
由平均數(shù)與方差的計算公式,計算90,90,93,94,93五個數(shù)的平均數(shù)和方差即可.【題目詳解】90,89,90,95,93,94,93,去掉一個最高分和一個最低分后是90,90,93,94,93,所以其平均數(shù)為,因此方差為.故選B【題目點撥】本題主要考查平均數(shù)與方差的計算,熟記公式即可,屬于基礎題型.3、D【解題分析】
過的中心M作直線,則上任意點到的距離相等,過線段中點作平面,則面上的點到的距離相等,平面與的交點即為球心O,半徑,故選D.考點:求解三棱錐外接球問題.點評:此題的關鍵是找到球心的位置(球心到4個頂點距離相等).4、D【解題分析】
利用正弦定理化簡,再利用三角形面積公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【題目詳解】由于,有正弦定理可得:,即由于在中,,,所以,聯(lián)立,解得:,由于為銳角,且,所以所以在中,由余弦定理可得:,故(負數(shù)舍去)故答案選D【題目點撥】本題考查正弦定理,余弦定理,以及面積公式在三角形求邊長中的應用,屬于中檔題.5、D【解題分析】
由弧長公式求出圓半徑,再在直角三角形中求解.【題目詳解】,如圖,設是中點,則,,,∴.故選D.【題目點撥】本題考查扇形弧長公式,在求弦長時,常在直角三角形中求解.6、D【解題分析】
根據(jù)直線方程,分類討論求得直線的斜率的取值范圍,進而根據(jù)傾斜角和斜率的關系,即可求解,得到答案.【題目詳解】由題意,可得當時,直線方程為,此時傾斜角為;當時,直線方程化為,則斜率為:,即,又由,解得或,又由且,所以傾斜角的范圍為,顯然A,B都符合,只有D不符合,故選D.【題目點撥】本題主要考查了直線方程的應用,以及直線的傾斜角和斜率的關系,著重考查了分類討論思想,以及推理與運算能力.7、B【解題分析】
利用等差數(shù)列的前n項和公式、通項公式列出方程組,能求出等差數(shù)列{an}的公差.【題目詳解】∵為等差數(shù)列的前n項和,,,∴,解得d=2,a1=5,∴等差數(shù)列的公差為2.故選:B.【題目點撥】本題考查等差數(shù)列的公差,此類問題根據(jù)題意設公差和首項為d、a1,列出方程組解出即可,屬于基礎題.8、C【解題分析】
根據(jù)同比和環(huán)比的定義比較兩期數(shù)據(jù)得出結論.【題目詳解】解:2015年第二季度利用率為74.3%,第三季度利用率為74.0%,故2015年第三季度環(huán)比有所下降,故A錯誤;2015年第一季度利用率為74.2%,2016年第一季度利用率為72.9%,故2016年第一季度同比有所下降,故B錯誤;2016年底三季度利用率率為73.2%,2017年第三季度利用率為76.8%,故2017年第三季度同比有所提高,故C正確;2017年第四季度利用率為78%,2018年第一季度利用率為76.5%,故2018年第一季度環(huán)比有所下降,故D錯誤.故選C.【題目點撥】本題考查了新定義的理解,圖表認知,考查分析問題解決問題的能力,屬于基礎題.9、D【解題分析】∵α-β+π=(α+π∴tan=2+3tan(α-β)=10、B【解題分析】
試題分析:根據(jù)誘導公式和兩角和的正弦公式以及正弦定理計算即可詳解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=,由正弦定理可得,∵a=2,c=,∴sinC==,∵a>c,∴C=,故選B.點睛:本題主要考查正弦定理及余弦定理的應用,屬于難題.在解與三角形有關的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結合和、差、倍角的正余弦公式進行解答.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
設緝私艇追上走私船所需要的時間為小時,根據(jù)各自的速度表示出與,由,利用余弦定理列出關于的方程,求出方程的解即可得到的值.【題目詳解】解:設緝私艇上走私船所需要的時間為小時,則,,在中,,根據(jù)余弦定理知:,或(舍去),故緝私艇追上走私船所需要的時間為2小時.故答案為:.【題目點撥】本題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦、余弦定理是解本題的關鍵,屬于中檔題.12、;【解題分析】
利用垂徑定理,即圓心與弦中點連線垂直于弦.【題目詳解】圓標準方程為,圓心為,,∵是中點,∴,即,∴的方程為,即.故答案為.【題目點撥】本題考查垂徑定理.圓中弦問題,常常要用垂徑定理,如弦長(其中為圓心到弦所在直線的距離).13、【解題分析】
已知等腰三角形可知為銳角,利用三角形內(nèi)角和為,建立底角和頂角之間的關系,再求解三角函數(shù)值.【題目詳解】設此三角形的底角為,頂角為,易知為銳角,則,,所以.【題目點撥】給值求值的關鍵是找準角與角之間的關系,再利用已知的函數(shù)求解未知的函數(shù)值.14、【解題分析】
根據(jù)等比數(shù)列中,,得到公比,再寫出和,從而得到.【題目詳解】因為為等比數(shù)列,,,所以,所以,,所以.故答案為:.【題目點撥】本題考查等比數(shù)列通項公式中的基本量計算,屬于簡單題.15、【解題分析】
用余弦定理求出邊的值,再用面積公式求面積即可.【題目詳解】解:據(jù)題設條件由余弦定理得,即,即解得,故的面積,故答案為:.【題目點撥】本題主要考查余弦定理解三角形,考查三角形的面積公式,屬于基礎題.16、2【解題分析】
根據(jù)莖葉圖的數(shù)據(jù)和平均數(shù)的計算公式,列出方程,即可求解,得到答案.【題目詳解】由題意,可得,即,解得.【題目點撥】本題主要考查了莖葉圖的認識和平均數(shù)的公式的應用,其中解答中根據(jù)莖葉圖,準確的讀取數(shù)據(jù),再根據(jù)數(shù)據(jù)的平均數(shù)的計算公式,列出方程求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解題分析】
根據(jù),再寫出一個等式:,利用兩等式判斷并得到等差數(shù)列的通項,然后求值.【題目詳解】當時,,∴.當時,,①,②①②,得,化簡得,或,∵數(shù)列是遞減數(shù)列,且,∴舍去.∴數(shù)列是等差數(shù)列,且,公差,故.【題目點撥】在數(shù)列中,其前項和為,則有:,利用此關系,可將與的遞推公式轉化為關于的等式,從而判斷的特點.18、(1);(2)【解題分析】
根據(jù)向量坐標運算計算得到與的坐標(1)由垂直關系得到數(shù)量積為,可構造方程求得;(2)由向量平行的坐標表示可構造方程求得.【題目詳解】,(1)由與垂直得:,解得:(2)由與平行得:,解得:【題目點撥】本題考查平面向量平行和垂直的坐標表示;關鍵是能夠明確兩向量垂直可得;兩向量平行可得.19、(1)當,且時,數(shù)列一定為等比數(shù)列.理由見解析;(2)【解題分析】
(1)利用等比數(shù)列的定義證明數(shù)列為等比數(shù)列.(2)利用(1)的結論,進一步求出數(shù)列的和及最大值.【題目詳解】解:(1)對于,,,①.②①減②得,即,,.當,且時,數(shù)列一定為等比數(shù)列.(2)由(1)得,,由,得,即(或)由可解得.所以,.【題目點撥】本題考查的知識要點:數(shù)列的通項公式的求法及應用,疊加法在求數(shù)列的通項公式中的應用,主要考查學生的運算能力和轉化能力
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院醫(yī)??颇甓裙ぷ骺偨Y
- 退役軍人服務保障體系標準化建設
- 求職者面試技巧全套教程
- 一般工貿(mào)行業(yè)新員工三級安全培訓考試試題及答案
- 建設工程施工合同糾紛要素式起訴狀模板修改無約束
- 不用熬夜寫!建設工程施工合同糾紛要素式起訴狀模板現(xiàn)成用
- 保險講師培訓
- 環(huán)境友好催化技術課件
- 調(diào)色年終總結和配料(3篇)
- 公務員法執(zhí)行情況自查報告
- 枕骨骨折的護理課件
- TCEC電力行業(yè)數(shù)據(jù)分類分級規(guī)范-2024
- 駱駝的養(yǎng)殖技術與常見病防治
- GB/T 26951-2025焊縫無損檢測磁粉檢測
- 2025及未來5-10年高壓管匯項目投資價值市場數(shù)據(jù)分析報告
- 《國家十五五規(guī)劃綱要》全文
- 腹部手術圍手術期疼痛管理指南(2025版)課件
- 2025年衛(wèi)生人才評價考試(臨床醫(yī)學工程技術中級)歷年參考題庫含答案
- 呼吸康復科普脫口秀
- 2025年《思想道德與法治》期末考試題庫及答案
- 2025初一英語閱讀理解100篇
評論
0/150
提交評論