江蘇省徐州市市區(qū)部分2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第1頁
江蘇省徐州市市區(qū)部分2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第2頁
江蘇省徐州市市區(qū)部分2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第3頁
江蘇省徐州市市區(qū)部分2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第4頁
江蘇省徐州市市區(qū)部分2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.二次三項式配方的結(jié)果是()A. B.C. D.2.二次函數(shù)y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.3.下列事件是必然事件的為()A.明天早上會下雨 B.任意一個三角形,它的內(nèi)角和等于180°C.擲一枚硬幣,正面朝上 D.打開電視機,正在播放“義烏新聞”4.下列事件中,屬于必然事件的是()A.任意畫一個正五邊形,它是中心對稱圖形B.某課外實踐活動小組有13名同學,至少有2名同學的出生月份相同C.不等式的兩邊同時乘以一個數(shù),結(jié)果仍是不等式D.相等的圓心角所對的弧相等5.已知,則的度數(shù)是()A.30° B.45° C.60° D.90°6.如圖,在⊙O中,AB為直徑,CD為弦,∠CAB=50°,則∠ADC=()A.25° B.30° C.40° D.50°7.下列事件是隨機事件的是()A.畫一個三角形,其內(nèi)角和是 B.射擊運動員射擊一次,命中靶心C.投擲一枚正六面體骰子,朝上一面的點數(shù)小于 D.在只裝了紅球的不透明袋子里,摸出黑球8.小明利用計算機列出表格對一元二次方程進行估根如表:那么方程的一個近似根是()A. B. C. D.9.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.10.一個不透明的袋子裝有除顏色外其余均相同的2個白球和個黑球.隨機地從袋中摸出一個球記錄下顏色,再放回袋中搖勻.大量重復試驗后,發(fā)現(xiàn)摸出白球的頻率穩(wěn)定在1.2附近,則的值為()A.2 B.4 C.8 D.11二、填空題(每小題3分,共24分)11.在等邊三角形中,于點,點分別是上的動點,沿所在直線折疊后點落在上的點處,若是等腰三角形,則____.12.如圖,在的矩形方框內(nèi)有一個不規(guī)則的區(qū)城(圖中陰影部分所示),小明同學用隨機的辦法求區(qū)域的面積.若每次在矩形內(nèi)隨機產(chǎn)生10000個點,并記錄落在區(qū)域內(nèi)的點的個數(shù),經(jīng)過多次試驗,計算出落在區(qū)域內(nèi)點的個數(shù)的平均值為6700個,則區(qū)域的面積約為___________.13.如圖,點、、在上,若,,則________.14.如圖,直角三角形的直角頂點在坐標原點,,若點在反比例函數(shù)的圖象上,則經(jīng)過點的反比例函數(shù)解析式為___;15.已知x=1是一元二次方程x2+ax+b=0的一個根,則代數(shù)式a2+b2+2ab的值是____________.16.如圖,⊙O為△ABC的內(nèi)切圓,D、E、F分別為切點,已知∠C=90°,⊙O半徑長為1cm,BC=3cm,則AD長度為__cm.17.如果關(guān)于的方程有兩個相等的實數(shù)根,那么的值為________,此時方程的根為_______.18.已知中,,的面積為1.(1)如圖,若點分別是邊的中點,則四邊形的面積是__________.(2)如圖,若圖中所有的三角形均相似,其中最小的三角形面積為1,則四邊形的面積是___________.三、解答題(共66分)19.(10分)在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用26m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)BC=xm.(1)若矩形花園ABCD的面積為165m2,求x的值;(2)若在P處有一棵樹,樹中心P與墻CD,AD的距離分別是13m和6m,要將這棵樹圍在花園內(nèi)(考慮到樹以后的生長,籬笆圍矩形ABCD時,需將以P為圓心,1為半徑的圓形區(qū)域圍在內(nèi)),求矩形花園ABCD面積S的最大值.20.(6分)如圖,已知一次函數(shù)分別交x、y軸于A、B兩點,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,與x軸的另一交點為C.(1)求b、c的值及點C的坐標;(2)動點P從點O出發(fā),以每秒1個單位長度的速度向點A運動,過P作x軸的垂線交拋物線于點D,交線段AB于點E.設(shè)運動時間為t(t>0)秒.①當t為何值時,線段DE長度最大,最大值是多少?(如圖1)②過點D作DF⊥AB,垂足為F,連結(jié)BD,若△BOC與△BDF相似,求t的值.(如圖2)21.(6分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸,y軸分別相交于A,B兩點,且與反比例函數(shù)y=交于點C,D.作CE⊥x軸,垂足為E,CF⊥y軸,垂足為F.點B為OF的中點,四邊形OECF的面積為16,點D的坐標為(4,﹣b).(1)求一次函數(shù)表達式和反比例函數(shù)表達式;(2)求出點C坐標,并根據(jù)圖象直接寫出不等式kx+b≤的解集.22.(8分)方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).(1)作出△ABC關(guān)于y軸對稱的,并寫出的坐標;(2)作出△ABC繞點O逆時針旋轉(zhuǎn)90°后得到的,并求出所經(jīng)過的路徑長.23.(8分)在平面直角坐標系中,已知拋物線.(1)我們把一條拋物線上橫坐標與縱坐標相等的點叫做這條拋物線的“方點”.試求拋物線的“方點”的坐標;(2)如圖,若將該拋物線向左平移1個單位長度,新拋物線與軸相交于、兩點(在左側(cè)),與軸相交于點,連接.若點是直線上方拋物線上的一點,求的面積的最大值;(3)第(2)問中平移后的拋物線上是否存在點,使是以為直角邊的直角三角形?若存在,直接寫出所有符合條件的點的坐標;若不存在,說明理由.24.(8分)在一個不透明的口袋里,裝有若干個完全相同的A、B、C三種球,其中A球x個,B球x個,C球(x+1)個.若從中任意摸出一個球是A球的概率為0.1.(1)這個袋中A、B、C三種球各多少個?(2)若小明從口袋中隨機模出1個球后不放回,再隨機摸出1個.請你用畫樹狀圖的方法求小明摸到1個A球和1個C球的概率.25.(10分)已知為直角三角形,∠ACB=90°,AC=BC,點A、C在x軸上,點B坐標為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的拋物線過點B、D.(1)求點A的坐標(用m表示);(2)求拋物線的解析式;(3)設(shè)點Q為拋物線上點P至點B之間的一動點,連結(jié)PQ并延長交BC于點E,連結(jié)BQ并延長交AC于點F,試證明:FC(AC+EC)為定值.26.(10分)一個不透明的口袋中有1個大小、質(zhì)地完全相同的乒乓球,球面上分別標有數(shù)-1,2,-3,1.(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數(shù)是負數(shù)的概率為________.(2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題分析:在本題中,若所給的式子要配成完全平方式,常數(shù)項應(yīng)該是一次項系數(shù)-4的一半的平方;可將常數(shù)項3拆分為4和-1,然后再按完全平方公式進行計算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故選B.考點:配方法的應(yīng)用.2、D【解析】由m≤x≤n和mn<0知m<0,n>0,據(jù)此得最小值為1m為負數(shù),最大值為1n為正數(shù).將最大值為1n分兩種情況,①頂點縱坐標取到最大值,結(jié)合圖象最小值只能由x=m時求出.②頂點縱坐標取不到最大值,結(jié)合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數(shù)y=﹣(x﹣1)1+5的大致圖象如下:.①當m≤0≤x≤n<1時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當m≤0≤x≤1≤n時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,

1m=-(n-1)1+5,n=,∴m=,

∵m<0,

∴此種情形不合題意,所以m+n=﹣1+=.3、B【分析】直接利用隨機事件以及必然事件的定義分析得出答案.【詳解】解:A、明天會下雨,是隨機事件,不合題意;B、任意一個三角形,它的內(nèi)角和等于180°,是必然事件,符合題意;C、擲一枚硬幣,正面朝上,是隨機事件,不合題意;D、打開電視機,正在播放“義烏新聞”,是隨機事件,不合題意.故選:B.【點睛】此題主要考查了隨機事件以及必然事件,正確掌握相關(guān)定義是解題關(guān)鍵.4、B【分析】根據(jù)隨機事件、必然事件、不可能事件的定義,分別進行判斷,即可得到答案.【詳解】解:A、正五邊形不是中心對稱圖形,故A是不可能事件;B、某課外實踐活動小組有13名同學,至少有2名同學的出生月份相同,是必然事件,故B正確;C、不等式的兩邊同時乘以一個數(shù),結(jié)果不一定是不等式,是隨機事件,故C錯誤;D、在同圓或等圓中,相等的圓心角所對的弧相等,故D是隨機事件,故D錯誤;故選:B.【點睛】本題考查了隨機事件、必然事件、不可能事件的定義,解題的關(guān)鍵是熟練掌握定義,正確的進行判斷.5、C【解析】根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:由,得α=60°,

故選:C.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.6、C【分析】先推出∠ABC=40°,根據(jù)同弧所對的圓周角相等,可得∠ABC=∠ADC=40°,即可得出答案.【詳解】解:∵AB為直徑,∴∠ACB=90°,∵∠CAB=50°,∴∠ABC=40°,∵,∴∠ABC=∠ADC=40°,故選:C.【點睛】本題考查了直徑所對的圓周角是90°,同弧所對的圓周角相等,推出∠ABC=90°是解題關(guān)鍵.7、B【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】A、畫一個三角形,其內(nèi)角和是360°是不可能事件,故本選項錯誤;

B、射擊運動員射擊一次,命中靶心是隨機事件,故本選項正確;

C、投擲一枚正六面體骰子,朝上一面的點數(shù)小于7是必然事件,故本選項錯誤;

D、在只裝了紅球的不透明袋子里,摸出黑球是不可能事件,故本選項錯誤.

故選:C.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.8、C【分析】根據(jù)表格中的數(shù)據(jù),0與最接近,故可得其近似根.【詳解】由表得,0與最接近,故其近似根為故答案為C.【點睛】此題主要考查對近似根的理解,熟練掌握,即可解題.9、C【分析】由∠A是公共角,利用有兩角對應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.【詳解】∵∠A是公共角,∴當∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應(yīng)相等的三角形相似),故A與B正確,不符合題意要求;當AB:AD=AC:AB時,△ADB∽△ABC(兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.10、C【分析】根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目,二者的比值就是其發(fā)生的概率.【詳解】解:依題意有:=1.2,

解得:n=2.

故選:C.【點睛】此題考查了利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、,或【分析】根據(jù)等邊三角形的性質(zhì),得到CD=3,BD=,∠CBD=30°,由折疊的性質(zhì)得到,,,由是等腰三角形,則可分為三種情況就那些討論:①,②,③,分別求出答案,即可得到答案.【詳解】解:∵在等邊三角形中,,∴CD=3,BD=,∠CBD=30°,∵沿所在直線折疊后點落在上的點處,∴,,,由是等腰三角形,則①當時,如圖,∴,∴,∴是等腰直角三角形,∴,,∵,∴,解得:;∴;②當,此時點與點D重合,如圖,∴;③當,此時點F與點D重合,如圖,∴,∴;綜合上述,的長度為:,或;故答案為:,或.【點睛】本題考查了等邊三角形的性質(zhì),折疊的性質(zhì),以及等腰三角形的性質(zhì),熟練運用折疊的性質(zhì)是本題的關(guān)鍵.注意利用分類討論的思想進行解題.12、8.04【分析】先利用古典概型的概率公式求概率,再求區(qū)域A的面積的估計值.【詳解】解:由題意,∵在矩形內(nèi)隨機產(chǎn)生10000個點,落在區(qū)域A內(nèi)點的個數(shù)平均值為6700個,∴概率P=,∵4×3的矩形面積為12,∴區(qū)域A的面積的估計值為:0.67×12=8.04;故答案為:8.04;【點睛】本題考查古典概型概率公式,考查學生的計算能力,屬于中檔題.13、【分析】連接OB,先根據(jù)OA=OB計算出,再根據(jù)計算出,進而計算出,最后根據(jù)OB=OC得出即得.【詳解】解:連接OB,如下圖:∴∴,∵∴∴故答案為:【點睛】本題考查了圓的性質(zhì)及等腰三角形的性質(zhì),解題關(guān)鍵是熟知同圓的半徑相等,同弧所對的圓周角是圓心角的一半.14、【解析】構(gòu)造K字型相似模型,直接利用相似三角形的判定與性質(zhì)得出,而由反比例性質(zhì)可知S△AOD==3,即可得出答案.【詳解】解:過點B作BC⊥x軸于點C,過點A作AD⊥x軸于點D,

∵∠BOA=90°,

∴∠BOC+∠AOD=90°,

∵∠AOD+∠OAD=90°,

∴∠BOC=∠OAD,

又∵∠BCO=∠ADO=90°,

∴△BCO∽△ODA,

∴,

∴,∴S△BCO=S△AOD

∵S△AOD===3,∴S△BCO=×3=1∵經(jīng)過點B的反比例函數(shù)圖象在第二象限,

故反比例函數(shù)解析式為:y=.

故答案為.【點睛】此題主要考查了相似三角形的判定與性質(zhì)以及反比例函數(shù)數(shù)的性質(zhì),正確得出S△BOC=1是解題關(guān)鍵.15、1【分析】把x=1代入x2+ax+b=0得到1+a+b=0,易求a+b=-1,將其整體代入所求的代數(shù)式進行求值即可.【詳解】∵x=1是一元二次方程x2+ax+b=0的一個根,∴12+a+b=0,∴a+b=﹣1.∴a2+b2+2ab=(a+b)2=(﹣1)2=1.16、3【分析】如圖,連接OD、OE、OF,由切線的性質(zhì)和切線長定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接著證明四邊形OECF為正方形,則CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的長.【詳解】解:如圖,連接OE,OF,OD,∵⊙O為△ABC內(nèi)切圓,與三邊分別相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四邊形OECF為矩形而OF=OE,∴四邊形OECF為正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案為:3【點睛】本題考查了三角形的內(nèi)切圓與內(nèi)心,切線的性質(zhì),切線長定理,勾股定理,正方形的判定和性質(zhì),熟悉切線長定理是本題的關(guān)鍵.17、1【分析】根據(jù)題意,討論當k=0時,符合題意,當時,一元二次方程有兩個相等的實數(shù)根即,據(jù)此代入系數(shù),結(jié)合完全平方公式解題即可.【詳解】當k=0,方程為一元一次方程,沒有兩個實數(shù)根,故關(guān)于的方程有兩個相等的實數(shù)根,即即故答案為:1;.【點睛】本題考查一元二次方程根與系數(shù)的關(guān)系、完全平方公式等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.18、31.5;26【分析】(1)證得△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方及△ABC的面積為1,求得△ADE的面積,用大三角形的面積減去小三角形的面積,即可得答案;(2)利用△AFH∽△ADE得到,設(shè),,則,解得,從而得到,然后計算兩個三角形的面積差得到四邊形DBCE的面積.【詳解】(1)∵點D、E分別是邊AB、AC的中點,

∴DE∥BC,

∴△ADE∽△ABC,

∵點D、E分別是邊AB、AC的中點,

∴,∴,

∵,

∴,

∴;(2)如圖,

根據(jù)題意得,∴,設(shè),,∴,解得,∴,∴.

【點睛】本題考查了相似三角形的判定和性質(zhì):有兩組角對應(yīng)相等的兩個三角形相似.利用相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.三、解答題(共66分)19、(1)x的值為11m或15m;(2)花園面積S的最大值為168平方米.【分析】(1)直接利用矩形面積公式結(jié)合一元二次方程的解法即可求得答案;(2)首先得到S與x的關(guān)系式,進而利用二次函數(shù)的增減性即可求得答案.【詳解】(1)∵AB=xm,則BC=(26﹣x)m,∴x(26﹣x)=165,解得:x1=11,x2=15,答:x的值為11m或15m;(2)由題意可得出:S=x(26﹣x)=﹣x2+26x=﹣(x﹣13)2+169,由題意得:14≤x≤19,∵-1<0,14≤x≤19,∴S隨著x的增大而減小,∴x=14時,S取到最大值為:S=﹣(14﹣13)2+169=168,答:花園面積S的最大值為168平方米.【點睛】本題考查了二次函數(shù)的應(yīng)用以及一元二次方程的解法,正確結(jié)合二次函數(shù)的增減性求得最值是解題的關(guān)鍵.20、(1)b=2,c=3,C點坐標為(-1,0);(2)①;②【分析】(1)由一次函數(shù)求出點A、B坐標,代入拋物線解析式可求出b、c的值,令y=0可求出點C的坐標;(2)①由題意可知P(t,0),D(t,)、E(t,-t+3),然后表示出DE,利用二次函數(shù)的最值即可求出DE最大值;②分別用t表示出AP、EP、AE、DE、EF、BF,然后分類討論相似的兩種情況,或,列式求解即可.【詳解】解:(1)在中令x=0,得y=3,令y=0,得x=3,∴A(3,0),B(0,3),把A(3,0),B(0,3)代入y=﹣x2+bx+c中,得:,解得,∴拋物線的解析式為y=﹣x2+2x+3,令y=0則0=﹣x2+2x+3,解得,∴C點坐標為(-1,0);(2)①由題知P(t,0),D(t,)、E(t,-t+3);∴DE=()-()∴當時,DE長度最大,最大值為;②∴A(3,0),B(0,3),∴OA=OB,∴∠BAO=45°,在Rt△PAE中,∠PAE=45°,;在Rt△DEF中,∠DEF=45°,;∴若△BDF∽△CBO相似,則,即:,解得:(舍去);,若△BDF∽△BCO相似,則,即:,解得:(舍去);,;綜上,或時,△BOC與△BDF相似.【點睛】本題是二次函數(shù)壓軸題,著重考查了分類討論的數(shù)學思想,考查了二次函數(shù)的圖象與性質(zhì)、三角形相似、一次函數(shù)、解方程等知識點,難度較大.最后一問為探索題型,注意進行分類討論.21、(1)y=﹣2x+1;(2)﹣2≤x<0或x≥1.【分析】(1)由矩形的面積求得m=﹣16,得到反比例函數(shù)的解析式,把D(1,﹣b)代入求得的解析式得到D(1,﹣1),求得b=1,把D(1,﹣1)代入y=kx+1,即可求得一次函數(shù)的解析式;(2)由一次函數(shù)的解析式求得B的坐標為(0,1),根據(jù)題意OF=8,C點的縱坐標為8,代入反比例函數(shù)的解析式求得橫坐標,得到C的坐標,根據(jù)C、D的坐標結(jié)合圖象即可求得不等式kx+b≤的解集.【詳解】解:(1)∵CE⊥x軸,CF⊥y軸,∵四邊形OECF的面積為16,∴|m|=16,∵雙曲線位于二、四象限,∴m=﹣16,∴反比例函數(shù)表達式為y=,將x=1代入y=得:y=﹣1,∴D(1,﹣1),∴b=1將D(1,﹣1)代入y=kx+1,得k=﹣2∴一次函數(shù)的表達式為y=﹣2x+1;(2)∵y=﹣2x+1,∴B(0,1),∴OF=8,將y=8代入y=﹣2x+1得x=﹣2,∴C(﹣2,8),∴不等式kx+b≤的解集為﹣2≤x<0或x≥1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,用到的知識點是待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,這里體現(xiàn)了數(shù)形結(jié)合的思想,關(guān)鍵是根據(jù)反比例函數(shù)與一次函數(shù)的交點求出不等式的解集.22、(1)作圖詳見解析;(﹣5,﹣4);(2)作圖詳見解析;.【解析】試題分析:(1)分別作出各點關(guān)于y軸的對稱點,再順次連接即可,根據(jù)點在坐標系中的位置寫出點坐標即可;(2)分別作出各點繞點O逆時針旋轉(zhuǎn)90°后得到的對稱點,再順次連接即可,根據(jù)弧長公式計算可得所經(jīng)過的路徑長.試題解析:(1)如圖,即為所求作三角形(﹣5,﹣4);(2)如圖,即為所求作三角形,∵=,∴所經(jīng)過的路徑的長為=.考點:作圖——旋轉(zhuǎn)變換;作圖——軸對稱變換.23、(1)拋物線的方點坐標是,;(2)當時,的面積最大,最大值為;(3)存在,或【分析】(1)由定義得出x=y,直接代入求解即可(2)作輔助線PD平行于y軸,先求出拋物線與直線的解析式,設(shè)出點P的坐標,利用點坐標求出PD的長,進而求出面積的二次函數(shù),再利用配方法得出最大值(3)通過拋物線與直線的解析式可求出點B,C的坐標,得出△OBC為等腰直角三角形,過點C作交x軸于點M,作交y軸于點N,得出M,N的坐標,得出直線BN、MC的解析式然后解方程組即可.【詳解】解:(1)由題意得:∴解得,∴拋物線的方點坐標是,.(2)過點作軸的平行線交于點.易得平移后拋物線的表達式為,直線的解析式為.設(shè),則.∴∴∴當時,的面積最大,最大值為.(3)如圖所示,過點C作交x軸于點M,作交y軸于點N由已知條件得出點B的坐標為B(3,0),C的坐標為C(0,3),∴△COB是等腰直角三角形,∴可得出M、N的坐標分別為:M(-3,0),N(0,-3)直線CM的解析式為:y=x+3直線BN的解析式為:y=x-3由此可得出:或解方程組得出:或∴或【點睛】本題是一道關(guān)于二次函數(shù)的綜合題目,解題的關(guān)鍵是根據(jù)題意得出拋物線與直線的解析式.24、(1)這個袋中A、B、C三種球

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論